1、1 (每日一练每日一练)高一数学指对幂函数知识汇总笔记高一数学指对幂函数知识汇总笔记 单选题 1、已知()是上的偶函数,当 0,+)时,()=2+1,若实数,满足(lg)1,则t的取值范围是()A(110,1)(1,10)B(0,110)(1,10)C(1,0)(0,1)D(0,110)(1,+)答案:A 解析:依题意画出函数图象,可得当1 1,即可得到不等式,解得即可;解:由题意知,当 0,+)时,()=2+1,则(1)=(0)=1,又()是上的偶函数,(1)=(1)=1,函数图象如下所示:当()1时,则1 1,得1 lg 1且lg 0,所以110 10且 1,则的2 取值范围是(110,1
2、)(1,10).故选:A.2、若2=3,2=4,则2+的值为()A7B10C12D34 答案:C 解析:根据指数幂的运算性质直接进行求解即可.因为2=3,2=4,所以2+=2 2=3 4=12,故选:C 3、不等式227 241的解集是 A(,3)B(,3)C(3,+)D(3,+)答案:D 解析:利用指数函数y2x在 R 上的单调性,得出关于x的不等式 2x74x1,解此不等式,从而得出不等式的解集;因为y2x在 R 上是增函数,227 241,所以 2x73 所以不等式的解集是x|x3,故选 D.小提示:3 本题主要考查指数函数单调性的应用、不等式的解法,考查化归与转化思想,属于基础题 4、
3、设=30.7,=(13)0.8,=log0.70.8,则,的大小关系为()A B C D 1,=(13)0.8=30.8 30.7=,=log0.70.8 log0.70.7=1,所以 1 1时,函数递增;当0 1时,函数递增;当0 1时,函数递减;(3)借助于中间值,例如:0 或 1 等.5、函数()=(6 2)32的单调递减区间为()A12,2B3,12C12,+)D(,12 答案:A 4 解析:()=(6 2)3,由6 2 0结合函数=6 2的递减区间可得结果.()=(6 2)32=(6 2)3,由6 2 0得3 2,又6 2=(+12)2+254,所以函数()的单调递减区间为12,2.故选:A