1、第十四章 一次函数复习课知识点1 一次函数和正比例函数的概念 若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y= x等都是一次函数,y= x,y=-x都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定. (2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数. (3)当
2、b=0,k0时,y= kx仍是一次函数. (4)当b=0,k=0时,它不是一次函数.知识点2 函数的图象 把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象画函数图象一般分为三步:列表、描点、连线知识点 3一次函数的图象 由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(- ,0).但也不必一定
3、选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点4 一次函数y=kx+b(k,b为常数,k0)的性质(1)k的正负决定直线的倾斜方向;k0时,y的值随x值的增大而增大;kO时,y的值随x值的增大而减小(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;当b0时,直线与y轴交于正半轴上;当b0时,直线与y轴交于负半轴上;当b=0时,直线经过原点,是正比例函数(4)由于k,b的符号不同,直线所经过的象限也不同;如图1118(
4、l)所示,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);如图1118(2)所示,当k0,bO时,直线经过第一、三、四象限(直线不经过第二象限);如图1118(3)所示,当kO,b0时,直线经过第一、二、四象限(直线不经过第三象限);如图1118(4)所示,当kO,bO时,直线经过第二、三、四象限(直线不经过第一象限)(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的另外,从平移的角度也可以分析,例如:直线y=x1可以看作是正比例函数y=x向上平移一个单位得到的知识点5 正比例函数y=kx(k0)的性质(1)正比
5、例函数y=kx的图象必经过原点;(2)当k0时,图象经过第一、三象限,y随x的增大而增大;(3)当k0时,图象经过第二、四象限,y随x的增大而减小知识点6 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P必在函数的图象上例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P(2,1)不在直线y=x+l的
6、图象上知识点7 确定正比例函数及一次函数表达式的条件 (1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值 (2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值知识点8 待定系数法 先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法其中未知系数也叫待定系数例如:函数y=kx+b中,k,b就是待定系数知识点7 用待定系数法确定一次函数表达式的一般步骤(
7、1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式解:设一次函数的关系式为ykx+b(k0),由题意可知,解此函数的关系式为y= 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b,其中k,b是未知的常量,且k0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k,b);第三步,求(把求得的k,b的值代回到“设”的关系式y=kx+b中);第四
8、步,写(写出函数关系式).思想方法小结 (1)函数方法 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题(2)数形结合法 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用知识规律小结 (1)常数k,b对直线y=kx+b(k0)位置的影响当b0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b0时,直线与y轴的负半轴相交当k,b异号时,即- 0时,直线与x轴正半轴相交;当b=0时,即- =0时
9、,直线经过原点;当k,b同号时,即- 0时,直线与x轴负半轴相交当kO,bO时,图象经过第一、二、三象限;当k0,b=0时,图象经过第一、三象限;当bO,bO时,图象经过第一、三、四象限;当kO,b0时,图象经过第一、二、四象限;当kO,b=0时,图象经过第二、四象限;当bO,bO时,图象经过第二、三、四象限(2)直线y=kx+b(k0)与直线y=kx(k0)的位置关系直线y=kx+b(k0)平行于直线y=kx(k0)当b0时,把直线y=kx向上平移b个单位,可得直线y=kx+b;当bO时,把直线y=kx向下平移|b|个单位,可得直线y=kx+b(3)直线y1=k1x+b1与直线y2=k2x+
10、b2(k10 ,k20)的位置关系k1k2 y1与y2相交; y1与y2相交于y轴上同一点(0,b1)或(0,b2); y1与y2平行; y1与y2重合.成正比例两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,我们就称这两个变量成正比例。 用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示: y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变。基本概念题 本节有关基本概念的题
11、目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=- x; (2)y=- ; (3)y=-3-5x;(4)y=-5x2; (5)y=6x- (6)y=x(x-4)-x2.例2 当m为何值时,函数y=-(m-2)x +(m-4)是一次函数? 小结: 某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0而某函数若是正比例函数,则还需添加一个条件:常数项为0基础知识应用题 本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集
12、相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式 例3 一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长05cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数 做一做 乌鲁木齐至库尔勒的铁路长约600千米,火车从乌鲁木齐出发,其平均速度为58千米时,则火车离库尔勒的距离s(千米)与行驶时间t(时)之间的函数关系式是 . 例4 某物体从上午7时至下午4时的温度M()是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12
13、时,t=1表示下午1时),则上午10时此物体的温度为 例5 已知y-3与x成正比例,且x=2时,y=7. (1)写出y与x之间的函数关系式; (2)当x=4时,求y的值; (3)当y=4时,求x的值 做一做 已知y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是 . 例6 若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1x2时,y1y2,则m的取值范围是( ) AmO Bm0 Cm Dm 做一做 某校办工厂现在的年产值是15万元,计划今后每年增加2万元 (1)写出年产值y(万元)与年数x(年)之间的函数关系式; (2)画出函数的图象; (3
14、)求5年后的产值 例7 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式综合应用题 本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题例8 已知y+a与x+b(a,b为是常数)成正比例(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费04元;“神州行”使用者不交月租费,每通话1分,付话费06元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元
15、(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10 已知y+2与x成正比例,且x=-2时,y=0(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且SABP=4,求P点的坐标分析 由已知y+2与x成正比例,可设y+2=kx,把x=-2,y=0代入,可求出k,这样即可得到y与x之间的函数关系式,再根据函数图象及其性质进行分析,点
16、(m,6)在该函数的图象上,把x=m,y=6代入即可求出m的值例11 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y随x的增大而减小?分析 函数图象经过某点,说明该点坐标适合方程;图象与y轴的交点在y轴上方,说明常数项bO;两函数图象平行,说明一次项系数相等;y随x的增大而减小,说明一次项系数小于0当k3时,y随x的增大而减小例12 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线
17、上分析 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用例13 (1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么? (2)直线y=-x与y=-x+6的位置关系如何? 甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快”乙生说:“直线y=-x与y=-x+6是互相平行的”你认为这两个同学的说法正确吗?分析 (1)可先画出这两个函数的图象
18、,从图象中发现,当x2时,6x2x+8,所以,y=6x的函数值先达到30 (2)直线y=-x与y=-x+6中的一次项系数相同,都是-1,故它们是平行的,所以这两位同学的说法都是正确的 例14 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠”乙旅行社说:“所有人按全票价的6折优惠”已知全票价为240元(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠分析 先求出甲、乙两旅行社的收费与学生人数之间的函数关系式,再通过比较,探究结论小结 此题的创新之处在于先通过计算进行讨论,再作出决策,另外,这两个函数都是一次函数,利用图象来研究本题也不失为一种很好的方法做一做 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由