收藏 分销(赏)

第十四章一次函数导学案.doc

上传人:xrp****65 文档编号:7952971 上传时间:2025-01-28 格式:DOC 页数:9 大小:510KB 下载积分:10 金币
下载 相关 举报
第十四章一次函数导学案.doc_第1页
第1页 / 共9页
第十四章一次函数导学案.doc_第2页
第2页 / 共9页


点击查看更多>>
资源描述
14.2.1正比例函数 【学习目标】 1、理解正比例函数的概念及其图象的特征 2、能够画出正比例函数的图象 3、能够判断两个变量是否能够构成正比例函数关系 4、能够利用正比例函数解决简单的数学问题 【重 点】正比例函数的概念 【难 点】正比例函数性质 【课前准备】 1、还记得描点法画函数图象的一般步骤吗? ①______________,②___________________③____________________ 2、细读课本110—111页,完成课本111页的“思考”,试着写出函数解析式: ⑴ ; ⑵ ; ⑶ ; ⑷ 。 【学习流程】 一、正比例函数的概念 观察“思考”中所得的四个函数; (1)观察这些函数关系式,这些函数都是常数与自变量 的形式, (2)一般地,形如 ( )函数,叫做正比例函数,其中叫做 。 思考:为什么强调K是常数,K≠0 ? (3)、列举日常生活中正比例函数的模型,你知道多少? 练一练 (1)、下列函数哪些是正比例函数? ① y= ② y= ③ y=-+1 ④ y=2x ⑤y=x+1 ⑥ y=(a+1)x+2 (2)、若y=5x是正比例函数,则m=___________. (3)、若y=(m-2)x是正比例函数,则m=____________. 二、正比例函数图像的画法与性质 (一)、用描点法画出下列函数的图像 (1)、 y=2x (2)、 y=-2x (3)y=0.5x (4)y=-0.5x (二)、活动二:观察上题画函数,完成下列问题 (1)正比例函数是一条 ,它一定经过 。 (2)因为过 点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是( , )和( , ) (3)当k > 0时,直线经过 象限,随的增大而 当k〈0时,直线经过 象限,随的减小而 板块三、知识升华 既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单? 试一试:用最简单的方法画出下列函数的图像 (1)、 y=-3x (2) y=x 解:(1)当x=_____时,y=_____, 解: 当x=_____时,y=_____, 取点_______和_________, (2)描点、连线得: 收获乐园 本节课你有哪些收获?请在小组内交流。 随堂练习 1、 汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为___________________.y是x的_______函数。 2、 圆的面积y(cm)与它的半径x(cm)之间的函数关系式是________________.y是x的_______函数。 3、 函数y=kx(k≠0)的图像过P(-3,7),则k=____,图像过_____象限。 4、 y=, y=, y=3x+9, y=2x中,正比例函数是____________. 5、 在函数y=2x的自变量中任意取两个点x,x,若x<x,则对应的函数值y与y的大小关系是y___y. 6、 表示函数y=-kx(k<0)的图像是( )。 A B C D 7、若y与x-1成正比例,x=8时,y=6。写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值 8、若y=y+y,y与x成正比例,y与x-2成正比例,当x=1时,y=0,当x=-3时,y=4。求当x=3时的函数值。 讨论交流 问题:观察并比较: 1、两个函数图家象的相同点与不同点和变化规律 2、正比例函数是过原点的一条直线,其变化规律是否与有关? 巩固提升 1、下列函数中,哪些是正比例函数? 2、(1)若是正比例函数,则= (2)若函数是关于的正比例函数,则= 3、已知函数是关于的正比例函数 (!)求正比例函数的解析式 (2)画出它的图象 (3)若它的图象有两点,当时,试比较的大小 四.学习体会 本节课你学会了什么?有哪些收获? 14.2.2一次函数(1) 一、学习目标: 知识目标:1、理解正比例函数、一次函数的概念。 2、会根据数量关系,求正比例函数、一次函数的解析式。 3、会求一次函数的值。 Ø能力目标:应用函数的思想观察现实世界中的函数关系 Ø情感目标: 形成从一般到特殊的思维习惯,探索创新,感受成功的乐趣 二、重点难点 学习重点:理解和掌握一次函数解析式特点. 学习难点:一次函数与正比例函数关系的正确理解. 一. 独立思考,复习反馈 (一)说一说:函数的概念及函数的判断方法 (二)填一填; 1.汽车以60 km/h的速度匀速行驶,行驶路程S(km)与汽车行驶的时间t(h)之间的函数解析式为__________________. 2.一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为___________________. 3.汽车开始行驶时,邮箱内有油50升,如果每小时耗油5升,则邮箱内剩余油量Q(升)与行驶时间t(时)的函数解析式为_________________. 4.在Rt△ABC中,∠C=90°,设∠A= x°,∠B= y°,则y 关于x的解析式为_______. 二. 师生合作,共探新知 (一)一次函数,正比例函数的一般形式 1.比较下列各函数解析式,它们有哪些共同特征? 特征:(1) 等号两边的代数式都是( ); (2) 自变量的次数是( )。 2.定义____________________________________________________________ ___________________________________________________________________. 3.小练下列函数中,哪些是一次函数?哪些是正比例函数?系数 和常数项的值各为多少? (1) (2) (3) 4) (5) (6)y=x 4.反思:(1)正比例函数与一次函数的联系与区别; (2)正比例函数与小学学的“两个量成正比”的联系与区别; (二)理解一次函数y=kx+b(k0)的特征 已知一次函数y=1.6x+5 填表: X -2 -1 0 1 2 3 4 …… Y …… 2.填空:观察上表发现:当自变量x的值每增加1时,函数值y的变化规律是_____________________________, 3.合作结论:一般地, 一次函数y=kx=b(k0)自变量的值每增加1时,函数值都_________,这说明一次函数的函数值是随着自变量_________。 (三)一次函数自变量取值范围的确定 (1) 一般地, 一次函数y=kx=b(k0)自变量的取值范围是怎样的? (2) 学案开头4个函数的自变量取值范围又是怎样的?请说出来. 三 生生合作,巩固新知: 例1:一辆公共汽车在加油前油箱里还剩8L汽油,已知加油枪的流量为12L/min,若加油时间为x (min), 1) 请写出此时油箱中的油量y(L)与x (min)的函数关系式; 2) 若加油5min,则油箱中有多少升汽油? 例2:为了圆满完成2008年奥运会火炬的传递,奥运火炬手们从珠穆朗玛峰的北坡营地出发向峰顶发起冲击。已知奥运火炬手们出发地的气温为1C,当他们向上冲击时,海拔每升高1km,气温则下降6C, (1) 你能用解析式表示他们所在位置的温度y与向上登山的高度x之间的关系吗? (2) 若火炬手们向上登高了0.2km,则他们所在位置的温度为多少? 四.总结反思,拓展升华: 1、一次函数、正比例函数的概念及关系。 2、能根据已知简单信息,写出一次函数的表达式。 五.当堂检测,效果评价: 1.下列函数中,y是x的一次函数的是( ) ①y=x-6;②y=;③y=;④y=7-x A、①②③ B、①③④ C、①②③④ D、②③④ 2 .写出下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数? (1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm); (2)一边长为8(cm)的平行四边形的周长L(cm)与另一边长b(cm); (3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨; (4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时). (5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式; (6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系; (7)一棵树现在高50厘米,每个月长2厘米,x月后这棵树的高为y(厘米) 六.作业 1、下列说法不正确的是( ) (A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数 (C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数 2、已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为一次函数? (2)此函数为正比例函数? 3、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。 (1)求小球速度v随时间t变化的函数关系式,它是一次函数吗? (2)求第2.5秒时小球的速度? 4. 一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元。 (1)写出每月话费y元与通话时间x(x>120)的函数关系式; (2)分别求每月通话时间为100分,200分的话费。 思考题: 某种气体在0℃时的体积为100L,温度每升高1℃,它的体积增加0.37L。 (1)写出气体体积V(L)与温度t(℃)之间的函数解析式; (2)求当温度为30℃时气体的体积。 (3)当气体的体积为107.4L时,温度为多少摄氏度? 14.2.2 一次函数和它的图象(2) 【学习目标】:本节课通过两个例题探索一次函数的图象及其性质,发展抽象的数学思维.能用“两点法”画出一次函数的图象。结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。 【学习过程】: 一、回顾交流,揭示课题 【复习提问】 一次函数的概念 二、范例点击,实践操作 你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。 【例2】画出函数y=-6x,y=-6x+5,y=-6x-5的图象(在同一坐标系内). 【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果: 这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=-6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;函数y=-6x-5的图象与y轴交点是 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么? 【猜想】联系上面例2,考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系? 归纳平移法则: 一次函数y=kx+b的图象是一条 ,我们称它为直线y=kx+b,它可以看作由直线y=kx平移 个单位长度而得到(当b>0时,向 平移;当b<0时,向 平移). 对于一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法 三、合作学习,操作观察 例2 :分别画出下列函数的图像 (在练习本中完成) (1) (2) (3) (4) 分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x轴,y轴的交点。 (1) (2) (3) (4) ※ 观察上面四个图像,(1)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3)经过_________象限;y随x的增大而_______,函数的图像从左到右________;(4)经过_________象限;y随x的增大而_______,函数的图像从左到右________。 1、由此可以得到直线中,k ,b的取值决定直线的位置: (1)直线经过___________象限; (2)直线经过___________象限; (3)直线经过___________象限; (4)直线经过___________象限; 2、一次函数的性质: (1)当时,y随x的增大而_______,这时函数的图像从左到右_______; (2)当时,y随x的增大而_______,这时函数的图像从左到右_______; 四、课堂总结,发展潜能 1.一次函数y=kx+b图象的画法:在y轴上取(0,b)在x轴上取点(- ,0),过这两点的直线即所求图象. 2.一次函数y=kx+b的性质. 五、练习 1、一次函数的图像不经过( ) A、第一象限 B、第二象限 C、 第三想象限 D、 第四象限 2、已知直线不经过第三象限,也不经过原点,则下列结论正确的是( ) A、 B、 C、 D、 3、下列函数中,y随x的增大而增大的是( ) A、 B、 C、 D、 4、对于一次函数,函数值y随x的增大而减小,则k的取值范围是( ) A、 B、 C、 D、 5、一次函数的图像一定经过( ) A、(3,5) B、(-2,3) C、(2,7) D、(4、10) 6、已知正比例函数的函数值y随x的增大而增大,则一次函数的图像大致是( ) 7、一次函数的图像如图所示,则k_______, b_______,y随x的增大而_________ 8、一次函数的图像经过___________象限, y随x的增大而_________ (第6题) 9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是__________ 10、直线与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________ 11、已知一次函数的图像经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数关系式_____________ 12、已知一次函数图像(1)不经过第二象限,(2)经过点(2,-5),请写出一个同时满足(1)和(2)这两个条件的函数关系式:_______________ 13.y=3x与y=3x-3的图象在同一坐标系中位置关系是( ) A.相交 B.互相垂直 C.平行 D.无法确定 14.在函数y=kx+3中,当k取不同的非零实数时,就得到不同的直线,那么这些直线必定( ) A、交于同一个点 B、互相平行 C、有无数个不同的交点 D、交点的个数与k的具体取值有关 15.函数y=3x+b,当b取一系列不同的数值时,它们图象的共同点是( ) A、交于同一个点 B、互相平行 C有无数个不同的交点 D、交点个数的与b的具体取值有关 14.2.2 一次函数和它的图象(3) 一、【学习目标】:本节课主要探究一次函数的解析式,介绍待定系数法求一次函数解析式的方法.体会二元一次方程组的实际应用. 二、学习过程: 例1:已知一次函数的图像经过点(3,5)与(2,3),求这个一次函数的解析式。 分析:求一次函数的解析式,关键是求出k,b的值,从已知条件可以列出关于k,b的二元一次方程组,并求出k,b。 解: ∵一次函数经过点(3,5)与(2,3) ∴ 解得 ∴一次函数的解析式为_______________ 像例1这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个 式子的方法,叫做待定系数法。 练习: 1、已知一次函数,当x = 5时,y = 4, (1)求这个一次函数。 (2)求当时,函数y的值。 2、已知直线经过点(9,0)和点(24,20),求这条直线的函数解析式。 3、已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式. 例2:地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化,t与h之间在一定范围内近似地成一次函数关系。 1、根据上表,求t(℃)与h(千米)之间的函数关系式; 2、求当岩层温度达到1700℃时,岩层所处的深度为多少千米? 深度(千米) …… 2 4 6 …… 温度(℃) …… 90 160 300 …… 三、课堂总结,发展潜能 根据已知的自变量与函数的对应值,可以利用待定系数法确定一次函数解析式,具体步骤如下: 1.设出函数解析式的一般形式,其中包括未知的系数(需要确定这些系数,因此叫做待定系数). 2.把自变量与函数的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数的方程或方程组.(有几个待定系数,就要有几个方程) 3.解方程或方程组,求出待定系数的值,从而写出所求函数的解析式. 四、练习 1.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( ) A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 2.已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y轴交点的纵坐标是3,则此函数的解析式为( ) A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤3 D.不能确定 3、大拇指与小拇指尽量张开时,两指尖的距离称为指距。某研究表明,一般人的身高h时指距d的一次函数,下表中是测得的指距与身高的一组数据: 求出h与d之间的函数关系式: 某人身高为196cm,则一般情况下他的指距应为多少? 指距d(cm) 20 21 22 23 身高h(cm) 160 169 178 187 4.若一次函数y=bx+2的图象经过点A(-1,1),则b=__________. 14.2.2一次函数应用(4) [学习目标]:会根据题意求出分段函数的解析式,并能利用分段函数图形解决有关实际问题 [重点]:分段函数的初步认识与简单多变量问题的解决 [难点]:数学建模的过程、思想、方法的领会 一、自学引入:小明家距学校3千米,星期一早上,小明步行按每小时5千米的速度去学校,行走1千米时,遇到学校送学生的班车,小明乘坐班车以每小时20千米的速度直达学校,则小明上学的行程s关于行驶时间的函数的图像大致是下图中的 ( ) 小明运动的路程图像又是什么函数的图像呢?这种函数的解析式应该怎样来表示呢? 二、探索新知:看书的例5 ,完成问题 (1)填写下表: (2)写出购买种子数量与付款金额之间的函数解析式,并画出函数图像。 设购买种子数量为x千克,付款金额为y元;当0≤x≤2时,y=______________ 当 x>2 时,y=_________________;y与x的函数解析式也可合起来表示为_______________________ (3)画函数图像 1、一农民带上若干千克自产的土豆进城出售,为了方便他带了一些零钱备用,按市场价售出一些后又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)y的关系如图所示,结合图象回答下列问题:(1)这位农民自带的零钱时多少? (2)试求降价前y与之间的关系式.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 2、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程(km)之间的函数关系图象.(1)根据图象,写出当≥3时该图象的函数关系式;(2)某人乘坐2.5 km,应付多少钱?(3)某人乘坐13 km,应付多少钱?(4)若某人付车费30.8元,出租车行驶了多少千米? 三、运用新知:为鼓励居民节约用水,出台了新的用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分按每立方米2元计算).现某户居民某月用水立方米,水费为元,(1)求与的函数关系式。(2)与的函数关系用图象表示正确的是 ( ) 四、能力提升:如图点P按的顺序在边长为l的正方形边上运动,M是CD边上的中点.设点P经过的路程为自变量,APM的面积为,则函数的大致图象是( ) 五、当堂反馈(基础题):1、书练习 2、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1000微克=毫克),接着逐渐减少,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间(小时)的变化如图所示.当成人按规定剂量服药后:(1)分别求出≤2和≥2时,y与之间的函数关系式; (2)如果每毫升血液中含药量为4微克或4微克以上时, 在治疗疾病时是有效的,那么这个有效时间是多长? 3、某洗衣机在洗涤衣服时经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量(L)与时间(min)之间的关系如折线图所示.根据图象解答下列问题(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19 L,①求排水时,与之间的关系式. ②如果排水时间预定为2min,求排水2min时洗衣机中剩下的水量. (提高题):北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是400元/台、800 元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台.求:(1)写出总运输费用与北京运往重庆台之间的函数关系式;(2)若总运费为8 400元,上海运往汉口应是多少台?
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服