收藏 分销(赏)

第十四章一次函数导学案.doc

上传人:xrp****65 文档编号:7952971 上传时间:2025-01-28 格式:DOC 页数:9 大小:510KB
下载 相关 举报
第十四章一次函数导学案.doc_第1页
第1页 / 共9页
第十四章一次函数导学案.doc_第2页
第2页 / 共9页
第十四章一次函数导学案.doc_第3页
第3页 / 共9页
第十四章一次函数导学案.doc_第4页
第4页 / 共9页
第十四章一次函数导学案.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、14.2.1正比例函数【学习目标】 1、理解正比例函数的概念及其图象的特征2、能够画出正比例函数的图象3、能够判断两个变量是否能够构成正比例函数关系4、能够利用正比例函数解决简单的数学问题【重 点】正比例函数的概念【难 点】正比例函数性质【课前准备】 1、还记得描点法画函数图象的一般步骤吗?_,_ 2、细读课本110111页,完成课本111页的“思考”,试着写出函数解析式: ; ; ; 。【学习流程】 一、正比例函数的概念 观察“思考”中所得的四个函数; (1)观察这些函数关系式,这些函数都是常数与自变量 的形式,(2)一般地,形如 ( )函数,叫做正比例函数,其中叫做 。 思考:为什么强调K

2、是常数,K0 ? (3)、列举日常生活中正比例函数的模型,你知道多少?练一练(1)、下列函数哪些是正比例函数? y= y= y=-+1 y=2x y=x+1 y=(a+1)x+2(2)、若y=5x是正比例函数,则m=_.(3)、若y=(m-2)x是正比例函数,则m=_. 二、正比例函数图像的画法与性质(一)、用描点法画出下列函数的图像(1)、 y=2x (2)、 y=-2x (3)y=0.5x (4)y=0.5x (二)、活动二:观察上题画函数,完成下列问题(1)正比例函数是一条 ,它一定经过 。(2)因为过 点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是( , )和( ,

3、 ) (3)当k 0时,直线经过 象限,随的增大而 当k0时,直线经过 象限,随的减小而 板块三、知识升华 既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单? 试一试:用最简单的方法画出下列函数的图像 (1)、 y=-3x (2) y=x解:(1)当x=_时,y=_, 解: 当x=_时,y=_, 取点_和_,(2)描点、连线得:收获乐园 本节课你有哪些收获?请在小组内交流。随堂练习1、 汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为_.y是x的_函数。2、 圆的面积y(cm)与它的半径x(cm)之间的函数关系式是_.y是x的

4、_函数。3、 函数y=kx(k0)的图像过P(-3,7),则k=_,图像过_象限。4、 y=, y=, y=3x+9, y=2x中,正比例函数是_.5、 在函数y=2x的自变量中任意取两个点x,x,若xx,则对应的函数值y与y的大小关系是y_y.6、 表示函数y=-kx(k0)的图像是( )。 A B C D 7、若y与x-1成正比例,x=8时,y=6。写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值 8、若y=y+y,y与x成正比例,y与x-2成正比例,当x=1时,y=0,当x=-3时,y=4。求当x=3时的函数值。 讨论交流问题:观察并比较:1、两个函数图家象的相同点与不同点和

5、变化规律2、正比例函数是过原点的一条直线,其变化规律是否与有关?巩固提升1、下列函数中,哪些是正比例函数?2、(1)若是正比例函数,则 (2)若函数是关于的正比例函数,则 3、已知函数是关于的正比例函数(!)求正比例函数的解析式(2)画出它的图象(3)若它的图象有两点,当时,试比较的大小四学习体会本节课你学会了什么?有哪些收获?14.2.2一次函数(1) 一、学习目标:知识目标:1、理解正比例函数、一次函数的概念。2、会根据数量关系,求正比例函数、一次函数的解析式。3、会求一次函数的值。能力目标:应用函数的思想观察现实世界中的函数关系情感目标: 形成从一般到特殊的思维习惯,探索创新,感受成功的

6、乐趣二、重点难点学习重点:理解和掌握一次函数解析式特点学习难点:一次函数与正比例函数关系的正确理解一. 独立思考,复习反馈 (一)说一说:函数的概念及函数的判断方法(二)填一填; 1.汽车以60 km/h的速度匀速行驶,行驶路程S(km)与汽车行驶的时间t(h)之间的函数解析式为_.2.一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为_.3.汽车开始行驶时,邮箱内有油50升,如果每小时耗油5升,则邮箱内剩余油量Q(升)与行驶时间t(时)的函数解析式为_.4.在RtABC中,C=90,设A= x,B= y,则y 关于x的解析式为_.二. 师生合

7、作,共探新知(一)一次函数,正比例函数的一般形式1.比较下列各函数解析式,它们有哪些共同特征? 特征:(1) 等号两边的代数式都是( );(2) 自变量的次数是( )。2.定义_.3.小练下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?(1) (2) (3) 4) (5) (6)y=x 4.反思:(1)正比例函数与一次函数的联系与区别; (2)正比例函数与小学学的“两个量成正比”的联系与区别;(二)理解一次函数y=kxb(k0)的特征 已知一次函数y=1.6x+5填表:X-2-101234Y2.填空:观察上表发现:当自变量x的值每增加1时,函数值y的变化规律是_,3.合

8、作结论:一般地, 一次函数y=kx=b(k0)自变量的值每增加1时,函数值都_,这说明一次函数的函数值是随着自变量_。(三)一次函数自变量取值范围的确定 (1) 一般地, 一次函数y=kx=b(k0)自变量的取值范围是怎样的? (2) 学案开头4个函数的自变量取值范围又是怎样的?请说出来.三 生生合作,巩固新知:例1:一辆公共汽车在加油前油箱里还剩8L汽油,已知加油枪的流量为12L/min,若加油时间为x (min),) 请写出此时油箱中的油量y()与x (min)的函数关系式;) 若加油min,则油箱中有多少升汽油?例:为了圆满完成2008年奥运会火炬的传递,奥运火炬手们从珠穆朗玛峰的北坡营

9、地出发向峰顶发起冲击。已知奥运火炬手们出发地的气温为1C,当他们向上冲击时,海拔每升高1km,气温则下降6C,(1) 你能用解析式表示他们所在位置的温度y与向上登山的高度x之间的关系吗?(2) 若火炬手们向上登高了0.2km,则他们所在位置的温度为多少?四总结反思,拓展升华:1、一次函数、正比例函数的概念及关系。2、能根据已知简单信息,写出一次函数的表达式。五当堂检测,效果评价:1.下列函数中,y是x的一次函数的是( )y=x-6;y=;y=;y=7-xA、 B、 C、 D、2 .写出下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边

10、上的高h(cm);(2)一边长为8(cm)的平行四边形的周长L(cm)与另一边长b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时)(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(7)一棵树现在高50厘米,每个月长2厘米,x月后这棵树的高为y(厘米)六作业1、下列说法不正确的是( )(A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数

11、就不是一次函数2、已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为一次函数? (2)此函数为正比例函数?3、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?4. 一种移动通讯服务的收费标准为:每月基本服务费为30元,每月免费通话时间为120分,以后每分收费0.4元。(1)写出每月话费y元与通话时间x(x120)的函数关系式;(2)分别求每月通话时间为100分,200分的话费。思考题:某种气体在0时的体积为100L,温度每升高1,它的体积增加0.37L。(1)写出气体体积V(

12、L)与温度t()之间的函数解析式;(2)求当温度为30时气体的体积。(3)当气体的体积为107.4L时,温度为多少摄氏度?14.2.2 一次函数和它的图象(2) 【学习目标】:本节课通过两个例题探索一次函数的图象及其性质,发展抽象的数学思维能用“两点法”画出一次函数的图象。结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。【学习过程】: 一、回顾交流,揭示课题【复习提问】一次函数的概念 二、范例点击,实践操作 你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。 【例2】画出函数y=-6x,y=-6x+5,y=-6x-5的图象(在同一坐标系内)

13、 【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果:这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=-6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;函数y=-6x-5的图象与y轴交点是 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么?【猜想】联系上面例2,考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系? 归纳平移法则:一次函数y=kx+b的图象是一条 ,我们称它为直线y=kx+b,它可以看作由直线y=kx平移 个单位长度而

14、得到(当b0时,向 平移;当b2 时,y=_;y与x的函数解析式也可合起来表示为_(3)画函数图像1、一农民带上若干千克自产的土豆进城出售,为了方便他带了一些零钱备用,按市场价售出一些后又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)y的关系如图所示,结合图象回答下列问题:(1)这位农民自带的零钱时多少? (2)试求降价前y与之间的关系式(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2、如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程(km)之间的函数关系

15、图象(1)根据图象,写出当3时该图象的函数关系式;(2)某人乘坐25 km,应付多少钱?(3)某人乘坐13 km,应付多少钱?(4)若某人付车费308元,出租车行驶了多少千米?三、运用新知:为鼓励居民节约用水,出台了新的用水收费标准:若每月每户居民用水不超过4立方米,则按每立方米2元计算;若每月每户居民用水超过4立方米,则超过部分按每立方米45元计算(不超过部分按每立方米2元计算)现某户居民某月用水立方米,水费为元,(1)求与的函数关系式。(2)与的函数关系用图象表示正确的是 ( ) 四、能力提升:如图点P按的顺序在边长为l的正方形边上运动,M是CD边上的中点设点P经过的路程为自变量,APM的

16、面积为,则函数的大致图象是( )五、当堂反馈(基础题):1、书练习2、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1000微克=毫克),接着逐渐减少,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间(小时)的变化如图所示当成人按规定剂量服药后:(1)分别求出2和2时,y与之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间是多长?3、某洗衣机在洗涤衣服时经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量(L)与时

17、间(min)之间的关系如折线图所示根据图象解答下列问题(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19 L,求排水时,与之间的关系式如果排水时间预定为2min,求排水2min时洗衣机中剩下的水量(提高题):北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台如果从北京运往汉口、重庆的运费分别是400元/台、800 元台,从上海运往汉口、重庆的运费分别是300元/台、500元台求:(1)写出总运输费用与北京运往重庆台之间的函数关系式;(2)若总运费为8 400元,上海运往汉口应是多少台?

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服