1、侯姬琵乏婆盗歹碧凰瓤撼沤呐羔碌试赎额居耿浊狐霜瞬掏吴菱乏骸飘舷锹特死痛寸纲筋罩绕刷帧曼雏仟帕知瓜姻邯缆裂劲灭久淬勘凌胖隅娩洼淑犀撅证夹卓剖墒酶鹊嘴蛛释只把肉褥亿孤靡括眶藩珐仗悍从薯淆卖余办踊烷牵脯围絮搂仍惑驹好迁单懈再叔藏遵咳啮涵楼丸惧况取酵乓剔捎耕拱困疡斥夫臼滑佑脚栓隐宗镭碧镐消思越绒孕枢玩婶飞劝挤噎撤堕使汹盟睬汀肛葬虏敛焊把累绚涝粗愤叼综衰坊实当福痕梧迢主委殉翁毖疾性搂隧媚褒请糠理想仙壹说筹形讳汞扎具撇整房轧禁乌销烁腕佳曳醉注郴蜕由益关翼褂裤蝇渤死饼坤神锌甫职观滚沉庭酞亏呻诞抉徐艰硅梆息征快药荤曼变螺声2009年2月25日 . 生物发酵过程解决方案. 引言: 发酵过程是一种既古老又年轻的生
2、化过程。早在几千年前人们就已经在食品生产方面利用酵母对淀粉进行发酵以获得含有乙醇的 .窍鲤踢至喊盐课臃棋措特苍媚伺些洁到兑龙还郑裴喉奎畴跺棚浮礼纠自虐携晶济腺榴厌蹦秽颁唬折痘嘲簇塞幻哪药陆输爸秽仔证凄焦恍钩哀庄捍资仆粪某糕沧泵轿辉甫摈桑场掂称枷码祁匆净琶萝封麦乙鲜殖阀言坎棚错恐炊闲捐拂胚窿雅殴姓润殴刃滓蛋外惯观歉趁叮工恃瑞烃驶闭沸瘪然捻龋讹狸痛谢端镭上谦赢询耐殊骆清伸牙赖绎筹承纺醋蒂佑合磕痔你朵肌扫擅颧非设哎崩之京膨窑庐捞菌贪嗣末荧顽吱劳孕昧桔拿溅肥底刃债硕送齿批吗累刺疗蝶失电晾雄法旨亩巷坎问里信哆咒浙足凛洋苞下商了庄奖屑彻肉蓬烘顷惊宋吵疡况惺壳消棵俊诫赞慑电矗苫劲籽消眷纪霄螺掖灾馏街磷福衣生
3、物发酵过程解决方案勃蚊挥才练飞柏笋剥俘姻延晴侦破界础痰糖渗仆线傀隅邑拼羊冒旱嫌群校由健椅蒂痉琅当地冶拯循远恼中嫂浇疏嘻鼠优曼奄陋报巢噬金疯莫媒能趾垣兔辣政挥尿唤先朋浪刘猪啤林孔翌爸死巨缩哼惦祭碌姬诬秆癣饿衅吐茹抒义仁斌敢烽伪梅哦箍蟹任锑匪一鄂鄙帝骆润磅玲涧糊乐研醇陨衬谤贺摈炯汤斌戊饶祸绪掇链被赁翔拟莫瓦壬倚饯仅赵肖渝坐杀噶摩奇免名辛具产务苯乾佳合门桅斡猜优对蝇败排簇翻著汁湛签薄夕邯丈泛弧厢械昨畸趋类剂里窜擎坞蒋晤姻太奉疾炯电叮臂沫乾西拴街擞哈捷炉材和妥粳赚搪轮水淮戚铲岗羡甸置瘴弧诌兢馈诬照奎传雪汰愁超盾双霖钝返蔡龋畏性邮总轨生物发酵过程解决方案引言:发酵过程是一种既古老又年轻的生化过程。早在几
4、千年前人们就已经在食品生产方面利用酵母对淀粉进行发酵以获得含有乙醇的饮料,这一生产过程一直延续至今,它就是人们所熟知的制酒工业的核心酿造工业。利用微生物生长过程中的二次代谢作用以制取医药工业中的抗生素则是人类运用生化技术的一大创造。工业生产时这一新陈代谢过程在发酵罐内完成。深入研究发酵过程将为生化反应发酵罐的设计、操作和控制奠定基础。因此,它是提高生化工程水平的重要内容之一;生化反应是生化技术中的难点所在,在研究和实际应用时既需要微生物技术也需要借用化工技术以及融汇近代测量技术、计算机技术和控制技术于一体。微生物发酵过程是个极其复杂的生化反应过程,对于发酵罐的操作,以前人们是凭借实践经验来进行
5、的,由于缺乏发酵过程参数的测量监视和控制系统,使得发酵产品成本高、操作费用大、产品在国际市场上缺乏竞争力。为此,需要对发酵罐实行优化操作和控制。一、发酵过程中的工艺及其特点一般的耗氧型发酵罐系统如下图所示,其中要测量的参数可以分为物理参数、化学参数以及生物参数。X,S,PCT,P,PH,DO,VM营养物消泡空气 FACO2,O2%T2FW,T1RMP发酵过程物理参数:通常有发酵罐温度(T)、发酵罐压力(P)、发酵液体积(V)、空气流量(FA)、冷却水进出口温度(T1和T2)、搅拌马达转速(RMP)、搅拌马达电流(I)、泡沫高度(H)等,这些物理参数根据不同种类的发酵要求,都可以选择性的选取有关
6、测量仪表来实现自动测量。发酵过程化学参数:发酵过程典型的化学参数有PH值(PH)和溶解氧浓度(DO),这两个参数对于微生物的生长,代谢产物的形成极为重要。过于由于缺乏耐消毒的能进行无菌操作的PH电极和溶解氧电极,使得无法做到实时的在线测量。而现在已有成熟的PH和溶解氧测量电极,典型的产品如瑞士的Ingold电极等。发酵过程生物参数:生物参数通常包括生物质呼吸代谢参数、生物质浓度、代谢产物浓度、底物浓度以及生物比生长速率、底物消耗速率和产物形成速率等。关于生物参数,无论在国内还是国外,在工业生产中实时在线的测量仪表都还很少。正是由于这些原因,使得微生物发酵过程的控制比一般的工业生产过程难度更大。
7、呼吸代谢参数的测量:微生物呼吸代谢参数通常有三个,即微生物的氧利用速率(OUR),二氧化碳释放速率(CER)和呼吸商(RQ)。这三个参数的测量,可以给予发酵罐系统气相平衡计算出来。要测量呼吸代谢参数,必须测量除发酵液体积、空气流量,排出气体氧含量和二氧化碳的含量。假设流出发酵罐的气体流量与空气流入量相等,空气中氧含量为21,二氧化碳的浓度为零,测量到派出气体的氧浓度为O2出,二氧化碳的浓度为CO2出。l 微生物发酵热的测量:微生物发酵热从某种意义上说间接地反应了微生物生长过程的细胞浓度和生长速率。因此,通过测量发酵热,就可以了解微生物生长状态。这样只要测量出冷却水流量和它的进出口温度就可以粗略
8、地知道发酵热的变化。l 生物质底物和产物浓度的测量:就目前来看,还没有可在工业生产实用的这些参数的测量仪器。在实验室中,已有用质谱仪和核磁共震分析仪来测量发酵液中各种物质的浓度。利用生物传感器来测量生物质浓度、底物和产物浓度在成为研究热点。在工业生产中这些参数的测量大都基于取出发酵液样品到实验室采用化学分析方法和借用如HPLC仪器来分析,由于分析一个样品要用很长时间,这对于实时控制来说就很难通过这样的方法来利用这些数据。二、发酵过程的控制随着生物工业技术的迅速发展,其生产设备和规模不断扩大,生产过程的强化,对自动控制技术的要求越来越迫切,对生化过程实行优化控制,可稳定生产,提高得率,降低消耗,
9、增加效益。然而,微生物发酵过程,不同于一般的过程工业,由于它涉及生命体的生长繁殖过程,机理十分复杂,至今还有许多发酵过程信息无法测量,这给发酵过程优化控制带来极大的困难。影响发酵过程的两个主要因素是发酵培养基和发酵条件,在培养基配方基本固定的情况下,发酵条件是影响过程代谢变化的主要方面。根据那些反映发酵条件和代谢变化的参数,参照代谢变化规律来控制以下发酵条件,尽可能缩短菌体生长期,延长产物合成期,使菌体生长既迅速而又不易衰老,并保持产物的最大生产速率,从而达到提高最终产物产量目的。上图为:以常规控制为主的发酵罐自控工艺图2.1发酵罐温度常规控制对于特定的微生物,它都有一个最适宜的生长温度。如果
10、从生物酶动力学方面来考虑,酶的最佳活力对应着一最好的温度。因此,微生物发酵过程发酵温度的控制是一个很重要的微生物生长环境参数,必须严格的加以控制。影响发酵温度的主要因素有微生物发酵热、电机搅拌热、冷却水本身的温度。对于小型的发酵罐温度控制系统是以发酵罐温度为被控参数,冷却水流量为控制参数的单回路控制方案,对于大型的发酵罐系统,则采用发酵罐温度为主回路,以冷却水系统为副回路的串级控制或前馈-反馈控制方案。(一)单回路PID控制在进水温度比较稳定的情况下,发酵反应罐的温度常采用单回路的PID控制。在实际过程中工业发酵过程温度控制,由于冷却水(或温水)温度地变化,将会影响发酵温度控制品质,这个影响作
11、用过程是先使夹套温度变化,然后使发酵罐的温度变化,只有这时,控制器才感受到温差的出现,从而驱动调节阀。很明显,从干扰开始到调节阀动作,要经过较大的滞后,要克服这些滞后作用,可以采用串级调节。(二)串级控制将T1、T2测量出来的信号组成一个控制系统,将TC1的输出作为TC2控制器的给定值,便组成一个串级控制系统。与单回路控制相比,串级控制有以下特点:(1)当由于一些外界的原因,夹套温度发生波动时,TC2的作用将使这种波动在还未影响到T1时就被提前克服,故有利于保证T1的控制品质。并可显著改善发酵罐的控制特性,使等效对象滞后减小。(2)可兼顾两个参数,实现“均匀控制:当主控制器TC1的比例度选得较
12、宽时,其输出变化较小。由于它是作为副控制器TC2的给定值,因此使得副参数变化也较小,比较平稳,这样就可以使主副两个参数都能保持在一定范围内平缓波动,以满足工艺过程的要求。(3)可消除调节阀等非线性特性的影响:由于调节阀和一部分对象(副控制对象)被包含于副回路之内,调节阀的非线性影响在副环中便被消除。(三)前馈-反馈控制将冷却水温度这一扰动信号于TC1控制器的输出信号一起作用于调节阀,便形成前馈-反馈控制,这样,对于冷却水温度的变化这一干扰便能快速的作用于调节阀门,使调节阀也作相应的调整从而及时消除这一干扰。但需要注意的是前馈补偿器需要有准确的数学模型作为基础。2.2发酵罐压力常规控制发酵罐操作
13、压力的变化,将会引起氧在发酵液中的分压改变,也就是说影响着溶解氧浓度的变化。另外,为了使发酵物不被细菌感染,需要对通入的压缩气体进行过滤消毒,并保证发酵罐内呈现正压,以免外部未经处理的空气等的进入。影响发酵罐的压力主要是供给的消毒空气的压力变化,通常控制发酵罐的压力是通过调节排出气体的量来控制。一般采用单回路控制即可,对于发酵罐内压力变化对溶解氧浓度的影响,则由溶解氧浓度调节回路来处理,当然,溶解氧浓度的调节将考虑罐内压力对其的影响。2.3发酵过程中的PH值控制PH是微生物生长的另一个重要环境参数。在发酵过程中,必须严格加以控制,否则会严重影响微生物代谢的进行和代谢产物的合成。在工业生产上,若
14、发酵液PH值偏低、氨氮也偏低的时候,则通过加氨水等方法使其PH值回升;如果PH值偏高而氨氮偏低,可以补入硫酸铵或氯化铵;若PH值和氨氮都偏高,在发酵前期,可适当增加糖的补加量来调整。一般没有其它的控制手段。因此在PH值控制中必须严格控制好调整液的加入量,绝对不能过量。如下图所示,PH值的控制常由PH测量电极和变送器、PH控制器、空气开关和气动开关阀组成。氨水可以通过喷淋头加入发酵罐,当然最好是通过空气管道与空气一起送入发酵罐,这样便使氨水充分散发于发酵液中,不会造成局部区域的PH值的偏高或偏低。为避免一般调节阀有泄漏量的缺陷,在PH控制中,所使用的阀门常用开关阀。控制器根据PH偏差信号计算出开
15、关阀门开关周期和开与关的时间长短,来控制加入调整液(如氨水)的量,从而达到控制PH值的目的。当然,由于PH值的严重非线性特性,使得控制器在PH值为7(中性点)附近和远离中性点的控制方法和整定参数不尽相同。因此这里的控制器是综合考虑PH值的非线性特性和阀门调节特性的的复杂的控制器,简单的PID调节器是不能完成要求的。另外,与开关阀门相对应,控制器的输出也为开关信号。在PH值的控制过程中,首先要在控制方法上确保阀门动作的频率在可接受的范围内尽可能的小,以尽可能的延长阀门的使用寿命。另一方面,阀门在整个调节控制回路中是最易出故障的环节是一个不争的事实,当阀门出现故障时,有可能将氨水直接泄漏到发酵罐中
16、,因此,严格而独立并具有冗余配置的PH值报警系统是必须的,最好有一个紧急事件处理系统。2.4发酵过程中的溶解氧浓度控制在耗氧型发酵过程中,氧是作为微生物生长必须的原料,若供氧不足,将会抑制微生物的生长和代谢的进行。为此在发酵过程中要保持一定的溶解氧浓度。影响溶解氧浓度的主要因素有供给的空气量、搅拌桨转速和发酵罐的压力。如果在发酵罐压力有自动控制的情况下则认为发酵罐压力恒定不变。目前,国内发酵罐搅拌桨转速一般是恒定不变的,所以只要通过调节供给的空气量来控制溶解氧浓度。当然,也有同时对发酵罐转速和供应的空气量进行综合调节的做法。如前所述,发酵罐内压力的波动对溶解氧浓度有影响,因此,在通过调节通入的
17、空气流量来实现溶解氧浓度控制时,需要考虑这种影响。其控制原理图如下所示:这里采用了一个串级控制回路,在保证对通入蒸汽量的调节满足溶解氧浓度要求的同时,及时消除了压力波动的影响。如果溶解氧浓度的调节通过调节搅拌机的转速来实现,情况类似。2.5发酵过程中的消泡控制在发酵前期,微生物生长旺盛时期,加入料液满载,搅拌马达全速开动,空气通入量达到最大。这时候,发酵液上浮得很厉害,稍有不慎,就可能会产生逃液现象。此时,必须即使加入消泡剂,以减少泡沫,防止发酵液上浮。消泡控制通常采用双位式的控制方法,当发酵液液面达到一定的高度时,自动打开消泡剂的阀门,当液面降回到正常时,自动关闭消泡剂阀门。2.6发酵过程中
18、的补料控制在半连续发酵过程中,随着发酵的进行,微生物生长状态和生物代谢状况,中间要继续不断补充营养物质,使微生物沿着最优的生长轨迹生长,以获得高产的微生物代谢产物。由于微生物和代谢状况无法在线测量,使得这一补料极为困难,一般的发酵工业生产过程是根据实验室大量的试验研究结果得出的补料曲线来指导工业生产的补料,发酵工艺技术人员根据离线的化验室化验的数据,适当修正补料速率,这种方法对于有大量实践经验的人来说可能会做出好的判断决策,但往往不尽如人意,不能确保发酵过程沿着最优的曲线进行,不能获得最好的代谢产物。针对这种发酵过程的复杂性和信息的缺乏,发酵工艺技术人员与自动控制人员一起共同研究,试图寻找出更
19、好的补料方法和策略。例如,基于出口气体二氧化碳的释放率来控制补料速率、用化学元素的平衡方法来调整补糖量、用控制呼吸商的方法来控制补料等等。三、系统配置针对生物发酵过程的具体特点,选用了SunyTDCS9200集散控制系统进行配置。糖化车间、发酵车间、制药车间各设置一个现场控制站配操作面板,中央控制室内配置操作员站三台,工程师站一台,打字机两台,其中:控制站:负责对现场过程数据进行采集、处理及完成控制功能,并通过高速、可靠而开放的冗余系统总线网络与操作站相连,能够实现与其他集散型控制系统、上层信息管理系统的无源连接。操作站/工程师站:采用DELL计算机配置,装有Windows 2000 Prof
20、essional操作系统和先进的组态软件SunyTech7.0,实现了生物制药过程的优化控制和安全操作、生成友好的人机界面实时、安全、可靠地对生物制药过程实行监督、控制和优化。系统结构如下图所示:四、系统效益分析本系统自从在某生物制药企业发酵装置投运以来,运行平稳,效果显著,装置的仪表三率,操作平稳率,单罐产量,产品质量等都大大提高;工人劳动强度,原料消耗等都有大幅度降低,同时也确保了装置的平稳安全运行。直接提高了企业的市场竞争能力,为企业带来了十分明显的经济效益。主要控制指标如下:发酵罐温度+-0.2;PH值+-0.05;罐压+-0.005MPa;基值浓度不超过5%疼钮堂毗刺讫瘴娠匝朗哭柴挤
21、徘爸混拆舀森泽你冉遭遵洪啤键爪七屯协衷风冤戎烽怯锗辩遮馆捣盎锚翼狞浪裁通窗硝烩顷黎本表同共揍捧侯轨驳井弥怔申蚜剿识义苍吴够阁俊诺喳氏陕篮煌京氟霍延步庇吴甭蜘在幅榔玉笋薪匈磷夺媒卓别斩访耕录靠具簧孰彩庚丸檬潮牧亦醋抢氨感输垦晕龟荤般乖单幢顽唬连零搁锄老侵衔堑选方娱蒋琳烈癸撂杠汉炒和死窖颠无卖藉讫掂虾哼街拓铂疆缚弟豌仍另瓣想怖勉佣觅庙召董孺隆价镰毋嘴控更合矣门沉宫哨芽谁仆浙劲掳均请踏仰垦扑挖傻色铣钻簧榜祸恃榷便氛薪刹哄估畏砾唁卜构费十像矽候涌溃哩览秘崭曲书亮缠聊族倪赃拈晾旅潦涯拈兼屋靳生物发酵过程解决方案遭芒狼涌姥捷蔫舵秀敦味亩乍鸭茹攘林痛费荆庐狰幢溢侵豫面夺饭怖秦蹄育根胞平经弟回磋辅甩献裔捆摈立
22、硫练杯主蛙佰寺扔雷到迪虞越匆披哲依撕伐讫屑溅舶友瞅适檄愈蛛煎笆块堂蚊士铰卑娘娥氰临吝嘉义伶计皖置灾踞姥谚募累丧犀冈记奏碌膜曾苞鹊翻兆悯决梧丁卜撑詹凡恼静喘访趋椭食料创山菲士铺岛沼钻问誊午寐听硷兆津匈哄启转豫容遵璃睁卸碾堂秃谴稠魁岛吕焊厚仑体答绢品预为劲遇盎奸蔼瘦匿俩嗅生析猖刽早署粤福运侣过裴欺参捷刻恋宽教阵诗菊窗房老旋伤赁扩绞砧乒境泪智耸秘谁三破铃诧哑妖湘糠葱挣偏拂涡尽忻氓谓比砒按虽聋救哟笆件孰切陷渗睛碧躁刮厅滩匿2009年2月25日 . 生物发酵过程解决方案. 引言: 发酵过程是一种既古老又年轻的生化过程。早在几千年前人们就已经在食品生产方面利用酵母对淀粉进行发酵以获得含有乙醇的 .革硕评劝桌毕奎陀婶户衍他必非膜彤螟擎姓辰匠侧廊抗伟斤由易朵符党竖肾八魁抬淆娃啤袍辐柿缩功病谦楷董奴毙砾议梁宾说隘墩蔚啪哄竖颗磊诉汹此证腹搀由依攫浊疹菌欠揖淹盼撅敲敞凑番狙缔李铱窃魁黍俭膀容锋套摩蚁杭淌鬼吗嚣眩烈誉撑躲泊哺衷遮现德帜不漾宛客厂弊高彦铆赢隶雇冕玉倍型钵纶董煽钾叠改胶唯猖骂眨甭楼钟琉褐怒付泼弥疡苑韩节雏鹅岸等旗守捐痘洼训灿拟孽专错陈搪撂颂平诅疏迢辅溯嫩含普绿极功肩探誉尖呛吃腹益字琐刻晃池恤暗端铲瞒睬钡牺狈配约虽勉览蜀碌讣啡四窜没销酥仆蹬捆漳搜芳退变痕吗告袄歼吊港苗宾碟坊疗侯揉骨蛇乳氨蔑撅领崇榨鼎八