收藏 分销(赏)

第二课时空间向量的坐标运算.doc

上传人:仙人****88 文档编号:5823126 上传时间:2024-11-20 格式:DOC 页数:5 大小:306KB
下载 相关 举报
第二课时空间向量的坐标运算.doc_第1页
第1页 / 共5页
第二课时空间向量的坐标运算.doc_第2页
第2页 / 共5页
第二课时空间向量的坐标运算.doc_第3页
第3页 / 共5页
第二课时空间向量的坐标运算.doc_第4页
第4页 / 共5页
第二课时空间向量的坐标运算.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二课时 空间向量的坐标运算一、复习目标:1、理解空间向量坐标的概念;2、掌握空间向量的坐标运算; 3掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式二、重难点:掌握空间向量的坐标运算;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式三:教学方法:探析类比归纳,讲练结合四、教学过程(一)、基础知识过关(学生完成下列填空题)1、空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示;(2)在空间选定一点和一个单位正交基底,以点为原点,分别以的方向为正方向建立三条数轴:轴、轴、轴,它们都叫坐标轴我们称建立了一个空间直角坐标

2、系,点叫原点,向量 都叫坐标向量通过每两个坐标轴的平面叫坐标平面,分别称为平面,平面,平面;2、空间直角坐标系中的坐标: 在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标3、设a,b(1) ab 。 (2) a (3) ab (4) ab ;ab (5)模长公式:若, 则(6)夹角公式:(7)两点间的距离公式:若,则(8) 设则 , AB的中点M的坐标为 4、直线的方向向量的定义为 。如何求直线的方向向量?5、平面的法向量的定义为 。如何求平面的法向量?(二)典型题型探析题型1:空间向量的坐标例1、(1)

3、已知两个非零向量=(a1,a2,a3),=(b1,b2,b3),它们平行的充要条件是()A. :|=:|B.a1b1=a2b2=a3b3C.a1b1+a2b2+a3b3=0D.存在非零实数k,使=k(2)已知向量=(2,4,x),=(2,y,2),若|=6,则x+y的值是()A. 3或1 B.3或1 C. 3 D.1(3)下列各组向量共面的是()A. =(1,2,3),=(3,0,2),=(4,2,5)B. =(1,0,0),=(0,1,0),=(0,0,1)C. =(1,1,0),=(1,0,1),=(0,1,1)D. =(1,1,1),=(1,1,0),=(1,0,1)解析:(1)D;点拨

4、:由共线向量定线易知;(2)A点拨:由题知或;(3)A点拨:由共面向量基本定理可得。点评:空间向量的坐标运算除了数量积外就是考查共线、垂直时参数的取值情况。例2、已知空间三点A(2,0,2),B(1,1,2),C(3,0,4)。设=,=,(1)求和的夹角;(2)若向量k+与k2互相垂直,求k的值.思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果.解:A(2,0,2),B(1,1,2),C(3,0,4),=,=,=(1,1,0),=(1,0,2).(1)cos=,和的夹角为。(2)k+=k(1,1,0)+(1,0,2)(k1,k,2),k2=(k+2,k,4),

5、且(k+)(k2),(k1,k,2)(k+2,k,4)=(k1)(k+2)+k28=2k2+k10=0。则k=或k=2。点拨:第(2)问在解答时也可以按运算律做。(+)(k2)=k22k22=2k2+k10=0,解得k=,或k=2。题型2:数量积例3、(1)(2008上海文,理2)已知向量和的夹角为120,且|=2,|=5,则(2)=_.(2)设空间两个不同的单位向量=(x1,y1,0),=(x2,y2,0)与向量=(1,1,1)的夹角都等于。(1)求x1+y1和x1y1的值;(2)求的大小(其中0。解析:(1)答案:13;解析:(2)=22=2|2|cos120=2425()=13。(2)解

6、:(1)|=|=1,x+y=1,x=y=1.又与的夹角为,=|cos=.又=x1+y1,x1+y1=。另外x+y=(x1+y1)2-2x1y1=1,2x1y1=()21=.x1y1=。(2)cos=x1x2+y1y2,由(1)知,x1+y1=,x1y1=.x1,y1是方程x2x+=0的解.或同理可得或,或cos=+=+=.0,=。评述:本题考查向量数量积的运算法则。题型3:空间向量的应用例4、(1)已知a、b、c为正数,且a+b+c=1,求证:+4。(2)已知F1=i+2j+3k,F2=-2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于同一物体上,使物体从点M1(1,-2,

7、1)移到点M2(3,1,2),求物体合力做的功。解析:(1)设=(,),=(1,1,1),则|=4,|=.|,=+|=4.当=时,即a=b=c=时,取“=”号。(2)解:W=Fs=(F1+F2+F3)=14。点评:若=(x,y,z),=(a,b,c),则由|,得(ax+by+cz)2(a2+b2+c2)(x2+y2+z2).此式又称为柯西不等式(n=3)。本题考查|的应用,解题时要先根据题设条件构造向量,然后结合数量积性质进行运算。空间向量的数量积对应做功问题。(三)、强化巩固训练1、(07天津理,4)设、c是任意的非零平面向量,且相互不共线,则()()= | ()()不与垂直 (3+2)(3

8、2)=9|24|2中,是真命题的有( )A. B. C. D.解析:平面向量的数量积不满足结合律.故假;答案:D由向量的减法运算可知|、|、|恰为一个三角形的三条边长,由“两边之差小于第三边”,故真;因为()()=()()=0,所以垂直.故假;(3+2)(32)=94=9|24|2成立.故真.点评:本题考查平面向量的数量积及运算律。2、已知为原点,向量,求解:设,即解此方程组,得。(四)、小结: (1) 共线与共面问题;(2) 平行与垂直问题;(3) 夹角问题;(4) 距离问题;运用向量来解决它们有时会体现出一定的优势用空间向量解题的关键步骤是把所求向量用某个合适的基底表示,本节主要是用单位正交基底表示,就是适当地建立起空间直角坐标系,把向量用坐标表示,然后进行向量与向量的坐标运算,最后通过向量在数量上的关系反映出向量的空间位置关系,从而使问题得到解决在寻求向量间的数量关系时,一个基本的思路是列方程,解方程 (五)、作业布置:课本P56页A组中6、11、12、19课外练习:限时训练53中2、4、7、9、10、12、14五、教学反思:

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服