1、平行四边形的面积教案第1课时教学目标:1使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。2通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。3对学生进行辩诈唯物主义观点的启蒙教育。教学重点:理解公式并正确计算平行四边形的面积。教学难点:通过转化,理解平行四边形面积公式的推导过程。学具准备:每个学生准备一个平行四边形纸片、剪刀、三角板。教学过程:一、复习旧知1、什么是面积?2、请同学翻书到80页,观察这两个花坛,说说它们的形状。哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?二、导入
2、新课根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。三、讲授新课我们在学习长方形、正方形的面积时,学会用数方格的方法得到一个图形的面积。现在请同学们用这种方法算出平行四边形和长方形的面积。不满一格的,都按半格计算。把数出的数据填在80页的表格中,然后指名说出数得的结果,并说一说是怎样数的。(二)引入割补法以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方
3、法。(三)割补法1、从上面的表格中,你发现了什么?小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。那咱们能不能将平行四边形转化成长方形呢?想一想,该怎么做。学生分小组进行操作活动,交流各自方法。2、然后指名到前边演示。3、教师示范平行四边形转化成长方形的过程。刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。先沿着平行四边形的高剪下左边的直角三角形。左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。移动一段后,左手改按
4、梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)4、引导学生总结平行四边形面积计算公式。观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?这个长方形的长、宽与平行四边形的底、高有什么样的关系?这个长方形的面积怎么求?平行四边形的面积怎么求?教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原
5、来的平行四边形的底、高相等。板书:长方形的面积长宽;平行四边形的面积底高。5、教学用字母表示平行四边形的面积公式。板书:Sah,告知S和h的读音。说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成Sah,或者Sah。6、完成第81页中间的“填空”。7、验证公式学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)(四)应用1、学生自学例后,教师根据学生提出的问题讲解。2、判断,并说明理由。(1)两个平行四边形的高相等,
6、它们的面积就相等( )(2)平行四边形底越长,它的面积就越大( )3、做书上82页2题。四、体验今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?五、作业练习十五第1题。板书设计:平行四边形面积的计算长方形的面积长宽平行四边形的面积底高S=ahS=ah或S=ah第2课时教学内容:平行四边形面积计算的练习。(P8283页练习十五第48题)教学要求:1进一步理解和掌握平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解决生活中的相关问题,提高学生运用知识解决问题的能力。2养成良好的审题习惯。教学重点:运用所学知识解答生活中的相关问题。教具准备:长方体
7、木框。教学过程:一、基本练习1、上节课我们学习了平行四边形的计算公式,谁能说说平行四边形的面积是什么?它是怎样推导出来的?2、口算下面各平行四边形的面积。(1)底12米,高7米;(2)高13分米,第6分米;(3)底2.5厘米,高4厘米。3填空:1平方米=( )平方分米 1公顷=( )平方米150平方厘米=( )平方分米 3.6平方米=( )平方分米0.54平方分米=( )平方厘米二、指导练习1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?(1)学生独立列式解答,集体订正。(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?”必须知道哪两个
8、条件?生独立列式,集体讲评:先求这块地的面积:250780100001.95公顷,再求共收小麦多少千克:70001.9513650千克(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与比较,从数量关系上看,什么相同?什么不同?讨论归纳后,生自己列式解答:58500(250781000)(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。2.练习十五第5题:a、你能找出图中的两个平行四边形吗?b、生计算每个平行四边形的面积。c、他们的面积相等吗?为什么?如果学生有困难,可以
9、引导他们观察两个平行四边形的底和高有什么特点。d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)3练习十五6题让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)4练习十五第7题。老师出示一个长方形木框,慢慢拉成一个平行四边形。继续拉,让平行四边形的形状发生变化。让学生观察后说一说,什么没变?什么变了?师概括:木框4条边的长度没变,也就是周长没变。但拉成平行四边形后,底边上的高变了,面积也就变小了。思考:什么情况下面积最大?小组讨论后交流。5.练习十五第3题:已知一个平行四边形的面积和底,求高。分析与解:因为平行四边形的面积底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。三、课堂练习练习十五第7题。四、作业练习十五第4题。