1、二次根式的加减(2) 教学内容 利用二次根式化简的数学思想解应用题 教学目标 运用二次根式、化简解应用题 通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题 重难点关键 讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点 教学过程 一、复习引入 上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固二、探索新知例1如图所示的RtABC中,B=90,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度
2、向点C移动问:几秒后PBQ的面积为35平方厘米?(结果用最简二次根式表示) 分析:设x秒后PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面积公式就可以求出x的值 解:设x 后PBQ的面积为35平方厘米 则有PB=x,BQ=2x 依题意,得:x2x=35 x2=35 x= 所以秒后PBQ的面积为35平方厘米 答:秒后PBQ的面积为35平方厘米 例2要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度 解:由勾股定理,得 AB=2 BC= 所需钢材长度为 AB+BC+AC+BD =2+5+
3、2 =3+7 32.24+713.7(m) 答:要焊接一个如图所示的钢架,大约需要13.7m的钢材 三、巩固练习 教材练习3 四、应用拓展 例3若最简根式与根式是同类二次根式,求a、b的值(同类二次根式就是被开方数相同的最简二次根式) 分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式不是最简二次根式,因此把化简成|b|,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b 解:首先把根式化为最简二次根式: =|b| 由题意得 a=1,b=1 五、归纳小结 本节课应掌握运用最简二次根式的合并原理解决实际问题 六、布置作业 1习题 72选用课时作业设计 作
4、业设计 一、选择题 1已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( )(结果用最简二次根式) A5 B C2 D以上都不对 2小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米(结果同最简二次根式表示) A13 B C10 D5 二、填空题 1某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,鱼塘的宽是_m(结果用最简二次根式) 2已知等腰直角三角形的直角边的边长为,那么这个等腰直角三角形的周长是_(结果用最简二次根式) 三、综合提高题 1若最简二次根式与是同类二次根式,求
5、m、n的值 2同学们,我们以前学过完全平方公式a22ab+b2=(ab)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=()2,5=()2,你知道是谁的二次根式呢?下面我们观察: (-1)2=()2-21+12=2-2+1=3-2 反之,3-2=2-2+1=(-1)2 3-2=(-1)2 =-1求:(1);(2);(3)你会算吗? (4)若=,则m、n与a、b的关系是什么?并说明理由答案:一、1A 2C二、120 22+2三、1依题意,得 , , 所以或 或 或2(1)=+1 (2)=+1 (3)=-1 (4) 理由:两边平方得a2=m+n2 所以