1、高三数学任意角的三角函数及诱导公式人教实验版(B)【本讲教育信息】一. 教学内容:任意角的三角函数及诱导公式二. 复习内容:任意角的概念,弧度制,任意角的三角函数的定义,三角函数线,同角三角函数的基本关系,诱导公式。三. 课标要求:1. 任意角、弧度了解任意角的概念和弧度制,能进行弧度与角度的互化;2. 三角函数(1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;(2)借助单位圆中的三角函数线推导出诱导公式(/2, 的正弦、余弦、正切)。四. 命题走向从近几年的新课程高考考卷来看,试题内容主要考查三角函数的图形与性质,但解决这类问题的基础是任意角的三角函数及诱导公式,在处理一些复杂的
2、三角问题时,同角的三角函数的基本关系式是解决问题的关键。预测高考对本讲的考查是:1. 题型是1道选择题和解答题;2. 热点内容是三角函数知识的综合应用和实际应用,这也是新课标教材的热点内容。【教学过程】一、基本知识回顾1. 任意角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做角的顶点。为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它形成了一个零角。2. 终边相同的
3、角、区间角与象限角角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角。要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角。终边相同的角是指与某个角具有同终边的所有角,它们彼此相差2k(kZ),即|=2k+,kZ,根据三角函数的定义,终边相同的角的各种三角函数值都相等。区间角是介于两个角之间的所有角,如|=,。3. 弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。角有正负零角之分,它的弧度数也应该有正负零之分,如-,-2等等,一般地, 正角的弧度数是一个正数
4、,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径。角度制与弧度制的换算主要抓住。弧度与角度互换公式:1rad57.30=5718、10.01745(rad)。弧长公式:(是圆心角的弧度数),扇形面积公式:。4. 三角函数定义在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;。利用单位圆定义任意角的三角函数,设是一个任意角,它的终边与单位圆交于点,那么:(1)叫做的正弦,记做,即;(2)叫做的余弦,记做,即;(3)叫做的正切,记做,即。5. 三角函数线三角函数线是通过
5、有向线段直观地表示出角的各种三角函数值的一种图示方法。利用三角函数线在解决比较三角函数值大小、解三角方程及三角不等式等问题时,十分方便。以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米)。当角为第一象限角时,则其终边与单位圆必有一个交点,过点作轴交轴于点,根据三角函数的定义:;。我们知道,直角坐标系内点的坐标与坐标轴的方向有关.当角的终边不在坐标轴时,以为始点、为终点,规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无论哪种情况都有同理,当角的终边不在轴上时,以为始点、为
6、终点,规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标。这样,无论哪种情况都有。像这种被看作带有方向的线段,叫做有向线段。如上图,过点作单位圆的切线,这条切线必然平行于y轴,设它与的终边交于点,请根据正切函数的定义与相似三角形的知识,借助有向线段,我们有我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线。6. 同角三角函数关系式使用这组公式进行变形时,经常把“切”、“割”用“弦”表示,即化弦法,这是三角变换非常重要的方法。几个常用关系式:sin+cos,sin-cos,sincos;(三式之间可以互
7、相表示)同理可以由sincos或sincos推出其余两式。 当时,有。7. 诱导公式可用十个字概括为“奇变偶不变,符号看象限”。诱导公式一:,其中诱导公式二: ; 诱导公式三: ; 诱导公式四:; 诱导公式五:; sinsinsinsinsinsincoscoscoscoscoscoscossin(1)要化的角的形式为(为常整数);(2)记忆方法:“函数名不变,符号看象限”;(3)对于的三角函数可用“名称正余变,符号看象限”;(4)sin(k+)=(1)ksin;cos(k+)=(1)kcos(kZ);(5);。二、典型例题例1. 已知角;(1)在区间内找出所有与角有相同终边的角(2)集合,那
8、么两集合的关系是什么?解:(1)所有与角有相同终边的角可表示为:,则令 ,得 解得从而或代回得或(2)因为表示的是终边落在四个象限的平分线上的角的集合;而集合表示终边落在坐标轴或四个象限平分线上的角的集合,从而: 。点评:(1)从终边相同的角的表示入手分析问题,先表示出所有与角有相同终边的角,然后列出一个关于的不等式,找出相应的整数,代回求出所求解;(2)可对整数的奇、偶数情况展开讨论。例2. (2001全国理,1)若sincos0,则在( )A. 第一、二象限 B. 第一、三象限C. 第一、四象限 D. 第二、四象限解:sincos0,sin、cos同号。答案:B当sin0,cos0时,在第
9、一象限,当sin0,cos0时,在第三象限,因此,选B。例3. (2001春季北京、安徽,8)若A、B是锐角ABC的两个内角,则点P(cosBsinA,sinBcosA)在( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限解:A、B是锐角三角形的两个内角,AB90,B90A,cosBsinA,sinBcosA,故选B。例4. 已知是第三象限角,则是第几象限角?解一:因为是第三象限角,所以,当k=3m(mZ)时,为第一象限角;当k= 3m1(mZ)时,为第三象限角,当k= 3m2(mZ)时,为第四象限角,故为第一、三、四象限角。解二:把各象限均分为3等份,再从x轴的正向的上方起
10、依次将各区域标上I、,并依次循环一周,则原来是第象限的符号所表示的区域即为的终边所在的区域。由图可知,是第一、三、四象限角。点评:已知角的范围或所在的象限,求所在的象限是常考题之一,一般解法有直接法和几何法,其中几何法具体操作如下:把各象限均分n等份,再从x轴的正向的上方起,依次将各区域标上I、,并循环一周,则原来是第几象限的符号所表示的区域即为 (nN*)的终边所在的区域。例5. 已知角的终边过点,求的四个三角函数值。解:因为过点,所以,。当;,。当,;。例6. 已知角的终边上一点,且,求的值。解:由题设知,所以,得,从而,解得或。当时, ;当时, ;当时, 。例7. (2001全国文,1)
11、tan300+的值是( )A. 1B. 1C. 1D. 1解: tan300tan(36060)tan601答案:B例8. 化简:(1);(2)。解:(1)原式;(2)当时,原式。当时,原式。点评:关键是抓住题中的整数是表示的整数倍与公式一中的整数有区别,所以必须把分成奇数和偶数两种类型,分别加以讨论。例9. 已知,试确定使等式成立的角的集合。解:,=。又, 即得或所以,角的集合为:或。例10. (1)证明:;(2)求证:。解:(1)分析:证明此恒等式可采取常用方法,也可以运用分析法,即要证,只要证AD=BC,从而将分式化为整式证一:右边=证二:要证等式,即只要证 2()()=即证:,即1=,
12、显然成立,故原式得证。点评:在进行三角函数的化简和三角恒等式的证明时,需要仔细观察题目的特征,灵活、恰当地选择公式,利用倒数关系比常规的“化切为弦”要简洁得多。同角三角函数的基本关系式有三种,即平方关系、商的关系、倒数关系。(2)证一:由题意知,所以。左边=右边。原式成立。证二:由题意知,所以。又,。证三:由题意知,所以。,。点评:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边(如例5的证法一);(2)证明左右两边同等于同一个式子(如例6);(3)证明与原式等价的另一个式子成立,从而推出原式成立。例11. 已知,求下列各
13、式的值.(1);(2);解:(1)由得,代入所求式得(2)原式=将代入得:原式=点评:齐次弦函数可以通过商数关系转化为只含有正切的式子.例12. 已知,()求;解:(1)由得:又 (2)点评:;知道其中的任一个可以求其它两个,但要注意式子的符号。三、思维小结1. 几种终边在特殊位置时对应角的集合为:角的终边所在位置角的集合x轴正半轴y轴正半轴x轴负半轴y轴负半轴x轴y轴坐标轴2. 、2之间的关系。若终边在第一象限则终边在第一或第三象限;2终边在第一或第二象限或y轴正半轴。若终边在第二象限则终边在第一或第三象限;2终边在第三或第四象限或y轴负半轴。若终边在第三象限则终边在第二或第四象限;2终边在
14、第一或第二象限或y轴正半轴。若终边在第四象限则终边在第二或第四象限;2终边在第三或第四象限或y轴负半轴。3. 任意角的概念的意义,任意角的三角函数的定义,同角间的三角函数基本关系、诱导公式由于本重点是任意角的三角函数角的基础,因而学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化。只有这样才能在高考中夺得高分。三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,。所以,三角函数
15、是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数。4. 运用同角三角函数关系式化简、证明常用的变形措施有:大角化小,切割化弦等,应用 “弦化切”的技巧,即分子、分母同除以一个不为零的,得到一个只含的较简单的三角函数式。5. 需要记忆的三角公式【模拟试题】一、选择题1. 设角属于第二象限,且,则角属于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 给出下列各函数值:; 其中符号为负的有( )A. B. C. D. 3. 等于( )A. B. C. D. 4. 已知,并且是第二象
16、限的角,那么的值等于( )A. B. C. D. 5. 若是第四象限的角,则是( )A. 第一象限的角B. 第二象限的角C. 第三象限的角 D. 第四象限的角6. 的值( )A. 小于B. 大于 C. 等于D. 不存在二、填空题1. 设分别是第二、三、四象限角,则点分别在第_、_、_象限.2. 设和分别是角的正弦线和余弦线,则给出的以下不等式:; ;,其中正确的是_. 3. 若角与角的终边关于轴对称,则与的关系是_. 4. 设扇形的周长为,面积为,则扇形的圆心角的弧度数是 .5. 与终边相同的最小正角是_. 三、解答题1. 已知是关于的方程的两个实根,且,z求的值.2. 已知,求的值.3. 化简:4. 已知,求(1);(2)的值。【试题答案】一、选择题 1. C当时,在第一象限;当时,在第三象限;而,角在第三象限;2. C ;3. B 4. A 5. C ,若是第四象限的角,则是第一象限的角,再逆时针旋转6. A 二、填空题1. 四、三、二 当是第二象限角时,;当是第三象限角时;当是第四象限角时,;2. 3. 与关于轴对称4. 5. ,三、解答题1. 解:,而,则得,则, 2. 解:3. 解:原式4. 解:由得即(1)(2)用心 爱心 专心