1、探究与发现:三角形内角和石苑学校 杨晋波学习目标:1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。 学习重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。学习难点:对不同探究方法的指导和学生对规律的灵活应用。教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。学习过程:一、复习导入、引出课题。等腰等边三角形三角形分类师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究
2、有关三角形角的知识“三角形内角和”。(板书课题)二、探究新知1、三角形的内角、内角和(1)什么是三角形内角(课件)三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上1、2、3。(2)三角形内角和师:内角和指的是什么?生:三角形的三个角的度数的和,就是三角形的内角和。(多让几个学生说一说)2、猜一猜。师:这个三角形的内角和是多少度?师:是不是所有的三角形的内角和都是180呢?你能肯定吗?预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3操作验证:小组合作。选1个自己喜欢的三角形,选喜欢的方法进行验证。(老师首先为学生提供充
3、分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)4学生汇报。(1)教师:汇报的测量结果,有的是180,有的不是180,为什么会出现这种情况?师:有没有别的方法验证。(2)剪拼a、学生上台演示。B、请大家四人小组合作,用他的方法验证其它三角形。C、展示学生作品。D、师展示。(3)折拼师:有没有别的验证方法?师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足
4、够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)(4)数学文化师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180到初中我们还要更严密的方法证明三角形的内角和是180早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180(课件)帕斯卡(BlaisePascal,16231662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。5、巩固知识。(1)师:你对三角形内角和
5、是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。(2)解决课前问题,为什么画不出1个含有2个直角的三角形?1个三角形中有没有2个钝角?(3)师:我们对三角形的认识已经非常清晰,出示2个三角形,生分别说出内角和。把两个小三角形拼在一起,问:大三角形的内角和是?度。教师:为什么不是360?三、解决相关问题师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!1、看图,求未知角的度数2、书上88页10题。教师:刚才,我们利用了三角形的什么?3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。(1)我三边相等。(2)我是等腰三角形,我的顶角是96。(3)我有一个锐角是40。4、判断。5、求4边形、5边形内角和。下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?如果要求10边形的内角和,你会求吗?你有什么发现?(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。)四、总结。师:这节课你有什么收获?五、板书设计:三角形的内角和是1801+2+3=180度量剪拼折拼