1、3.假定某企业的短期成本函数是TC(Q)=Q3-5Q2+15Q+66:指出该短期成本函数中的可变成本部分和不变成本部分;写出下列相应的函数:TVC(Q) AC(Q)AVC(Q) AFC(Q)和MC(Q).解(1)可变成本部分: Q3-5Q2+15Q不可变成本部分:66(2)TVC(Q)= Q3-5Q2+15QAC(Q)=Q2-5Q+15+66/QAVC(Q)= Q2-5Q+15AFC(Q)=66/QMC(Q)= 3Q2-10Q+154已知某企业的短期总成本函数是STC(Q)=0.04 Q3-0.8Q2+10Q+5,求最小的平均可变成本值.解: TVC(Q)=0.04 Q3-0.8Q2+10QA
2、VC(Q)= 0.04Q2-0.8Q+10令得Q=10 又因为所以当Q=10时,5.假定某厂商的边际成本函数MC=3Q2-30Q+100,且生产10单位产量时的总成本为1000.求:(1) 固定成本的值.(2)总成本函数,总可变成本函数,以及平均成本函数,平均可变成本函数. 解:MC= 3Q2-30Q+100 所以TC(Q)=Q3-15Q2+100Q+M 当Q=10时,TC=1000 =500固定成本值:500TC(Q)=Q3-15Q2+100Q+500TVC(Q)= Q3-15Q2+100QAC(Q)= Q2-15Q+100+500/QAVC(Q)= Q2-15Q+1006.某公司用两个工厂
3、生产一种产品,其总成本函数为C=2Q12+Q22-Q1Q2,其中Q1表示第一个工厂生产的产量,Q2表示第二个工厂生产的产量.求:当公司生产的总产量为40时能够使得公司生产成本最小的两工厂的产量组合. 解:构造F(Q)=2Q12+Q22-Q1Q2+(Q1+ Q2-40) 令使成本最小的产量组合为Q1=15,Q2=258已知生产函数Q=A1/4L1/4K1/2;各要素价格分别为PA=1,PL=1.PK=2;假定厂商处于短期生产,且.推导:该厂商短期生产的总成本函数和平均成本函数;总可变成本函数和平均可变函数;边际成本函数.由(1)(2)可知L=A=Q2/16又TC(Q)=PA&A(Q)+PL&L(
4、Q)+PK&16 = Q2/16+ Q2/16+32 = Q2/8+32AC(Q)=Q/8+32/Q TVC(Q)= Q2/8AVC(Q)= Q/8 MC= Q/48已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价格为500;劳动的价格PL=5,求:劳动的投入函数L=L(Q).总成本函数,平均成本函数和边际成本函数.当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少? 解:(1)当K=50时,PKK=PK50=500,所以PK=10.MPL=1/6L-2/3K2/3MPK=2/6L1/3K-1/3整理得K/L=1/1,即K=L.将其代入Q=0.5L
5、1/3K2/3,可得:L(Q)=2Q(2)STC=L(Q)+r50 =52Q+500 =10Q +500 SAC= 10+500/Q SMC=10(3)由(1)可知,K=L,且已知K=50,所以.有L=50.代入Q=0.5L1/3K2/3, 有Q=25. 又=TR-STC =100Q-10Q-500 =1750所以利润最大化时的产量Q=25,利润=17509.假定某厂商短期生产的边际成本函数为SMC(Q)=3Q2-8Q+100,且已知当产量Q=10时的总成本STC=2400,求相应的STC函数、SAC函数和AVC函数。解答:由总成本和边际成本之间的关系。有STC(Q)= Q3-4 Q2+100Q+C= Q3-4 Q2+100Q+TFC2400=103-4*102+100*10+TFCTFC=800进一步可得以下函数STC(Q)= Q3-4 Q2+100Q+800SAC(Q)= STC(Q)/Q=Q2-4 Q+100+800/QAVC(Q)=TVC(Q)/Q= Q2-4 Q+100