收藏 分销(赏)

随机事件概率教案).doc

上传人:仙人****88 文档编号:5593182 上传时间:2024-11-13 格式:DOC 页数:4 大小:41KB
下载 相关 举报
随机事件概率教案).doc_第1页
第1页 / 共4页
随机事件概率教案).doc_第2页
第2页 / 共4页
随机事件概率教案).doc_第3页
第3页 / 共4页
随机事件概率教案).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.1 随机事件的概率 一、教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;(3)利用概率知识正确理解现实生活中的实际问题2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法3、情感态度与价值观:(1)通过学生自

2、己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:用概率的知识解释现实生活中的具体问题三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。例如,你明天什么时间起床?7:20

3、在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件

4、A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率(7)似然法与极大似然法:见课本P1113、例题分析:例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0时,冰融化”;(3)“

5、某人射击一次,中靶”;(4)“如果ab,那么ab0”;(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件例2 某射手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m8194492178455击中靶心的频率(1)填写表中击中靶心的

6、频率;(2)这个射手射击一次,击中靶心的概率约是什么?分析:事件A出现的频数nA与试验次数n的比值即为事件A的频率,当事件A发生的频率fn(A)稳定在某个常数上时,这个常数即为事件A的概率。解:(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,0.89,0.91.(2)由于频率稳定在常数0.89,所以这个射手击一次,击中靶心的概率约是0.89。小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。练习:一个地区从某年起几年之内的新生儿数及其中男婴数如下:时间范围1年内2年内3年内4年内新生婴儿数554496071352017190男婴数28834970

7、69948892男婴出生的频率(1)填写表中男婴出生的频率(结果保留到小数点后第3位);(2)这一地区男婴出生的概率约是多少?答案:(1)表中依次填入的数据为:0.520,0.517,0.517,0.517.(2)由表中的已知数据及公式fn(A)=即可求出相应的频率,而各个频率均稳定在常数0.518上,所以这一地区男婴出生的概率约是0.5182. 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?分析:中靶的频数为9,试验次数为10,所以靶的频率为=0.9,所以

8、中靶的概率约为0.9解:此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;中10环的概率约为0.24、课堂小结:概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。5、自我评价与课堂练习:1将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )A必然事件 B随机事件 C不可能事件 D无法确定2下列说法正确的是( )A任一事件的概率总在(0.1)内 B不可能事件的概率不一定为0C必然事件的概率一定为1 D以上均不对3下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。每批粒数251070130700150020003000发芽的粒数2496011628263913392715发芽的频率(1)完成上面表格:(2)该油菜子发芽的概率约是多少?4生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?7、作业:198页 1,2题随机事件的概率理科组:许翠美 莫旗职教中心

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服