资源描述
齐齐哈尔大学普通高等教育
机械设计课程设计
题目题号:链式输送机的二级圆锥-圆柱齿轮减速器
学 院: 机电工程学院
专业班级: 机械143
学生姓名: 王靖宇
指导教师: 李明
成 绩:
2016年 12 月 25 日
机械设计课程设计成绩评阅表
题 目
二级圆锥-圆柱齿轮减速器
评分项目
分值
评价标准
评价等级
得分
A级(系数1.0)
C级(系数为0.6)
选题合理性
题目新颖性
10
课题符合本专业的培养要求,新颖、有创新
基本符合,新颖性一般
内容和方案技术先进性
10
设计内容符合本学科理论与实践发展趋势,科学性强。方案确定合理,技术方法正确
有一定的科学性。方案及技术一般
文字与
图纸质量
20
设计说明书结构完整,层次清楚,语言流畅。
设计图纸质量高,错误较少。
设计说明书结构一般,层次较清楚,无重大语法错误。
图纸质量一般,有较多错误
独立工作
及创造性
20
完全独立工作,有一定创造性
独立工作及创造性一般
工作态度
20
遵守纪律,工作认真,勤奋好学。
工作态度一般。
答辩情况
20
介绍、发言准确、清晰,回答问题正确,
介绍、发言情况一般,回答问题有较多错误。
评价总分
总体评价
注:1、评价等级分为A、B、C、D四级,低于A高于C为B,低于C为D。
2、每项得分=分值×等级系数(等级系数:A为1.0,B为0.8,C为0.6,D为0.4)
3、总体评价栏填写“优”、“良”、“中”、“及格”、“不及格”之一。
机械设计课程设计任务书
学生姓名: 王靖宇 班级: 机械143 学号:2014111213
一、 设计题目:链式输送机的二级圆锥-圆柱齿轮减速器
给定数据及要求
1、滚筒2、链传动3、减速器4、联轴器5、电动机6、一级齿轮7、二级齿轮
图1 二级圆锥圆柱齿轮减速器传动图
工作条件:传动不逆转,载荷平稳,起动载荷为名义载荷的1.25倍。输送带速度允许误差为±5%
已知条件
题 号
1
2
3
4
5
输送链工作拉力(N)
3000
输送带速度V(m/s)
0.8
链节距P(m m)
80
链轮齿数Z
10
每日工作时数T(h)
16
传动工作年限(年)
10
二、 应完成的工作
1. 减速器装配图1张(A0图纸);
2. 零件工作图1—2张(输出轴、齿轮等);
3. 设计说明书1份。
指导教师:李明
发题日期 2016年11月 28日
完成日期 2016年12 月12日
目 录
摘 要·············································································································6
第1章 绪论····································································································7
1.1 选题的目的和意义·················································································7
1.2 本课题在国内外的研究状况····································································7
1.3 课题研究的内容及拟采取的技术、方法····················································7
第2章 课程设计任务书····················································································8
2.1 题目及用途··························································································8
2.2 设计要求·····························································································8
第3章 传动方案的拟定与分析··········································································9
3.1 课程设计传动方案·················································································9
3.2 方案分析······························································································9
第4章 电动机的选择······················································································10
4.1 电动机类型的选择···············································································10
4.2 电动机功率的选择···············································································10
4.3 确定电动机转速··················································································10
4.4 确定电动机型号··················································································11
第5章 计算总传动比及分配各级传动比·····························································12
5.1 总传动比····························································································12
5.2 分配各级传动比··················································································12
第6章 动力学参数计算··················································································13
6.1 计算各轴转速·····················································································13
6.2 计算各轴的功率··················································································13
6.3 计算各轴扭矩·····················································································13
第7章 传动零件的设计计算············································································14
7.1 锥齿轮传动的设计计算········································································14
7.1.1 类型选择·······················································································14
7.1.2 载荷计算·······················································································14
7.1.3 型号选择·······················································································14
7.2 圆柱齿轮的设计计算········································································18
7.2.1 选择齿轮传动类型··········································································18
7.2.2 选择材料·······················································································18
7.2.3 按齿面接触疲劳强度进行设计··························································18
7.2.4 按齿根弯曲强度设计几何尺寸····················································20
7.2.5 校核齿根弯曲疲劳强度····································································22
第8章 轴的设计计算·····················································································23
8.1 输入轴的设计计算······································································23
8.1.1 轴的结构设计·················································································23
8.2 中间轴的设计计算···········································································27
8.3 输出轴的设计计算·············································································34
第9章 链及链轮的选择··················································································40
9.1 选择链轮齿数·····················································································40
9.2 确定计算功率·····················································································40
9.3 选择链条型号和齿距···········································································40
9.4 计算链节数和中心距···········································································40
9.5 计算链速v,确定润滑方式····································································41
9.6 计算压轴力Fp····················································································41
第10章 滚动轴承的选择及校核计算································································42
10.1 计算输入轴轴承················································································42
10.2 计算中间轴轴承··································································43
10.3 计算输出轴轴承················································································44
第11章 键连接的选择···················································································45
11.1 输入轴的联轴器选择·····························································45
第12章 减速器的润滑与密封··········································································46
12.1 齿轮的润滑·······················································································46
12.2 滚动轴承的润滑················································································46
12.3 密封································································································46
第13章 附件的结构设计················································································48
第14章 减速器箱体结构尺寸··········································································49
设计小结·······································································································51
致谢············································································································ 52
参考文献·······································································································53
摘 要
本设计是链式运输机用圆柱圆锥减速器,采用的是二级齿轮传动。在设计的过程中,充分考虑了影响各级齿轮和各部件的承载能力,对其做了详细的分析,并就它们的强度,刚度,疲劳强度和使用寿命等都做了校核,并且在此基础上,从选材到计算都力争做到精益求精。考虑到使用性能原则,工艺性能原则,经济及环境友好型原则,在材料的价格,零件的总成本,资源及能源,材料的环境友好及循环使用等方面都做了较为深刻的评估。本次设计还考虑了机械零件的各种失效形式,在尽可能的情况下做到少发生故障。本次设计具有:各级传动的承载能力接近相等;减速器的外廓尺寸和质量最小;传动具有最小的转动惯量;各级传动中大齿轮的浸油深度大致相等等特点。
关键词:齿轮传动;轴;链连接;滚动轴承;结构尺寸
第1章 绪 论
1.1 选题的目的和意义
选择该课题是为了巩固,加深课堂学习知识,使得学到的知识能灵活的运用到生活实际中来。
1.2 本课题在国内外的研究状况
箱体零件是机器或部件的基础零件,它把有关零件联结成一个整体,使这些零件保持正确的相对位置,彼此能协调地工作。因此,箱体零件的制造精度将直接影响机器或部件的装配质量,进而影响机器的使用性能和寿命。
因而箱体一般具有较高的技术要求。由于机器的结构特点和箱体在机器中的不同功用,箱体零件具有多种不同的结构型式,其共同特点是:结构形状复杂,箱壁薄而不均匀,内部呈腔型;有若干精度要求较高的平面和孔系,还有较多的紧固螺纹孔等。
箱体零件的毛坯通常采用铸铁件。因为灰铸铁具有较好的耐磨性,减震性以及良好的铸造性能和切削性能,价格也比较便宜。有时为了减轻重量,用有色金属合金铸造箱体毛坯(如航空发动机上的箱体等)。在单件小批生产中,为了缩短生产周期有时也采用焊接毛坯。毛坯的铸造方法,取决于生产类型和毛坯尺寸。在单件小批生产中,多采用木模手工造型;在大批量生产中广泛采用金属模机器造型,毛坯的精度较高。箱体上大于30—50mm的孔,一般都铸造出顶孔,以减少加工余量。
因此我内外的人员都在苦心研究箱体零件的铸造和使用。
1.3 课题研究的内容及拟采取的方法
要研究链式输送机的二级圆锥-圆柱齿轮减速器,只要运用到类比、筛选和假设等方法。
第2章 课程设计任务书
2.1 题目及用途
题目:设计某链式输送机的二级圆锥-圆柱齿轮减速器
用途:用于链式传输机的传输工作
2.2 设计要求
工作条件:传动不逆转,载荷平稳,起动载荷为名义载荷的1.25倍。输送带速度允许误差为±5%。
原始数据:传送带工作拉力F=3000N;带速V=0.8m/s;滚筒直径D=350mm;
1、滚筒2、链传动3、减速器4、联轴器5、电动机6、一级齿轮7、二级齿轮
图 2-1 二级圆锥圆柱齿轮减速器传动图
第3章 传动方案的拟定与分析
3.1 课程设计传动方案
传动方案:要求设计二级圆锥圆柱齿轮减速器。
3.2 方案分析
分析:
它与一级齿轮减速器相比具有更好的减速效果,润滑条件好等优点,适用于传动V≤1m/s,这正符合本课题的要求。
减速机在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。按照传动级数不同可分为单级和多级减速机;按照齿厂轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥-圆柱齿引轮减速机;按照传动的布置形式又可分为展开式、分流式和同进轴式减速机。减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动、齿轮-蜗杆传动所组成的独立部件,常用作原动件与工作机之间的减速传动装置。
通用圆柱齿轮的制造精度可从JB179-60的8-9级提高到GB10095-88的6级,高速齿轮的制造精度可稳定在4-5级。部分减速器采用硬齿面后,体积和质量明显减小,承载能力、使用寿命、传动效率有了较大的提高,对节能和提高主机的总体水平起到很大的作用。
当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。
近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。成套机械装备中,齿轮仍然是机械传动的基本部件。CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。
在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。
第4章 电动机的选择
4.1 电动机类型的选择
选择Y系列三相异步电动机。
4.2 电动机功率的选择
传动装置的总效率:弹性联轴器传动效率(一个)为=0.99
锥齿轮的传动(7级精度)效率为=0.97
圆柱齿轮传动(7级精度)效率为=0.98
滚子链传动效率为=.0.91
球轴承传动效率(三对)为=0.99
运输链轮效率为=0.98
总效率为:
==0.8591
工作机所需有效功率:
= =2.4KW
电机所需的功率:
==2.79kw
4.3 确定电动机转速
计算工作转速:
nw==60r/min
由《机械设计课程设计手册》查得:
圆锥齿轮传动比i=2~4
单极圆柱齿轮传动比i=3~5
链轮传动比 i=2~6
nd=nwi1i2i3=720~8200 r/min
电动机转速的可选范围:
nd=nwi1i2i3=720~8200 r/min
符合这一范围的同步转速有1000,1500和3000r/min。
表4-1 电动机参数表
方案
电动机型号
额定功率/kw
同步转速/满载转速/(r/min)
1
Y132S2-2
7.5
3000/2920
2
Y132-M
7.5
1500/1440
3
Y132S-6
3
960/1000
根据容量和转速,由有关手册查出有四种适用的电动机型号,因此有四种传动比方案,综合考虑电动机和传动装置尺寸、重量、价格和链传动、减速器的传动比,可见第3方案比较适合,则选n=1000r/min。
4.4 确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。
其主要性能:额定功率3.0KW;满载转速960r/min.
=0.8591
=2.79 kw
电动机型号:
Y132S—6
第5章 计算总传动比及分配各级传动比
5.1 总传动比
=960/60=16
5.2 分配各级传动比
A锥齿轮传动比,齿数的确定
因为是圆锥圆柱齿轮减速器,为使大锥齿轮的尺寸不致过大,i13,且i10.25ia,所以取i1=3.8。由于是闭式传动,小齿轮齿数在20~40之间。选小圆锥齿轮齿数为z1=30,z2=3.8´z1=114.
B链轮传动比、齿数的确定
根据《机械设计》,为了减少动载荷, z525,取z5=25为了不发生脱链,z6不宜过大,又因为链接数通常为偶数,因此 z6 最好是奇数,由链轮齿数优先序列选z6=51 ==2.12
C圆柱齿轮传动比、齿数的确定
圆柱齿轮减速器传动比
i2==1.99
选小圆柱齿轮齿数 z3=30,
z4=z3i2=60
z4取60,i2=2
D校核实际传动比
i= i1 ´ i2 ´ il = 28.88
nw===33.24r/min
转速误差在 5%内,故符合要求。
=16
=3.8
=2.12
=2
第6章 动力学参数计算
6.1 计算各轴转速
=9600r/min
= =960r/min
= =253/min
==66.5r/min
=/ =33.24r/min
6.2 计算各轴的功率
=2.79kw
2.94kw
2.82kw
2.74kw
2.44kw
6.3 计算各轴扭矩
29.2468 N·m
29.2468N·m
106.5788N·m
393.4026N·m
701.8848N·m
=960r/min
=
=960r/min
=
=253/min
=
=66.5r/min
=/
=33.24r/min
=2.79kw
=2.94kw
=2.82kw
=2.74kw
=2.44kw
=29.2468 N·m
= 29.2468N·m
=106.578 N·m
=393.402 N·m
=701.884 N·m
第7章 传动零件的设计计算
7.1 锥齿轮传动的设计计算
7.1.1 选择齿轮传动锥类型、精度等级、齿数
由《机械设计》可知,锥齿轮选直齿,选择7级精度。功率=2.94kw,小齿轮转速为=960 r/min,齿数比为3.8,选小齿轮齿数Z1=30,大齿轮齿数Z2=u·Z1=3.8×30=114
7.1.2 选择材料
<<机械设计>>,材料选择,小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者之间相差40HBS。
7.1.3 按齿面接触疲劳强度进行设计
根据《机械设计》第九版
公式:
≥
1.试选载荷系数=1.5
2.计算小齿轮传递的转矩
=29.2×10
选取齿宽系数=0.3
3.由图10-5和10-20查得材料弹性影响系数=189.8MPa,=2.5。
4.由图10-25d按齿面的硬度查得小齿轮的接触疲劳强度极限750Mpa,大齿轮的接触疲劳极限690Mpa。
5.计算应力循环次数
设n为齿轮转速(单位为r/min);j为齿轮每转一圈时,同一齿面的啮合次数;为齿轮的工作寿命(单位h),则齿轮的工作应力循环次数
=6.221109
2.0737109
6.由《机械设计》图10-23查得接触疲劳寿命系数
0.90 =0.95
7.取失效概率为1%,安全系数s=1计算接触疲劳许用应力
540Mpa
523Mpa
取2者中较小的作为该齿轮副的接触疲劳许用应力,即
=523Mpa
8.试算小齿轮的分度圆直径
代入中的较小值得
≥ =49.564mm
9. 计算圆周速度v
=42.129mm
=(3.14×72.225×960)/(60×1000)=3.987m/s
当量齿轮的齿宽系数
b==57.472mm
=b/= 1.364
10.算载荷系数
齿轮的使用系数载荷状态均匀平稳,查表10-2得=1.0
查图10-8得动载系数=1.173
由表10-3查得齿间载荷分配系数=1。
由表10-4用插值法查的七级精度,小齿轮悬臂时得齿向分布系数=1.345
接触强度载荷系数
==1×1.173×1×1.345=1.578 11.按实际的载荷系数校正所得的分度圆直径
=49.564×=52.871mm
m=/=52.87/30=1.762mm
7.1.4 按齿根弯曲疲劳强度
1.试选 =1.3
分锥角: 11.91o =90-=78.04o
2.计算当量齿数
=/cos=24/cos18.438o=30.92
=/cos=72/cos71.562o=550.72
3.查表10-17和10-18得=2.55,=1.65,=2.1,=1.92
4 由10-22查得弯曲疲劳寿命系数
=0.85,=0.88
由图10-24c查得齿轮的弯曲疲劳强度极限=500Mpa =380Mpa
取安全系数 S=1.7
250Mpa
197Mpa
=0.0163
=0.0204
因为大齿轮的 大于小齿轮
所以取==0.0204
试算模数
=1.773
5.调整齿轮模数
1)圆周速度v
==1.773×30=53.19mm
45.2115mm
=(3.14×45.211×960)/(60×1000)=2.271m/s
2)齿宽b
b==61.677mm
3)计算实际载荷系数
查图10-8得动载系数=1.12
由表10-3查得齿间载荷分配系数=1
由表10-4和图10-13用插值法查的七级精度,小齿轮悬臂时得齿向分布系数,利用计算得出=1.270
==1×1.12×1×1.270=1.425
由实际载荷系数算出齿轮模数
m==1.828mm
4)按照齿根弯曲疲劳强度计算的模数,就近选择标准模数m=2,按照接触疲劳强度算的分度圆直径=52.871mm,得小齿轮齿数
=52.871/2=26.435
取=27 则大齿轮齿数=108为了使两齿轮互质,取=108
5)计算分度圆直径
=m=54mm
==216mm
计算分锥角:
=14o
=90-=76o
计算齿宽
b= /2=61.307mm
取 b1=b2=72mm
这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到了结构紧凑,避免浪费。
6)主要设计结论
模数m=2,齿数z1=27,z2=108,压力角20o,变位系数0,分锥角14o,=76o齿宽小齿轮材料为40Cr(调质),大齿轮材料为45钢(调质),设计精度7级。
7.2 圆柱齿轮传动的设计计算
7.2.1选定齿轮类型、精度等级、齿数
输入功率 =2.82kw,小齿轮转速为=960r/min,齿数比为3.8,选小齿轮齿数=30,则=u==3.8×24=114, 选用斜齿圆柱齿轮传动,压力角20o,初选螺旋角=14o
7.2.2选择材料
选择小齿轮材料40Cr钢,调质处理,硬度280HBS;大齿轮材料45钢,调质处理,硬度240HBS ,二者相差40HBS。
7.2.3 按齿面接触疲劳强度进行设计
公式:
1.选载荷系数=1.3
2.小齿轮传递的转矩
=29.24×10/=140.443 N·mm
3.由表选取齿宽系数=1,
由图10-20选取区域系数
计算接触疲劳强度用重合度系数
o
= 28.429o
=24.253o
=1.7228
=2.382
=
=0.5776
4.表查得材料的弹性影响系数
=189.8MPa
5.图按齿面硬度查得小齿轮的接触疲劳强度极限=750Mpa,大齿轮的接触疲劳强度极限=600Mpa。
6.应力循环次数
=60×480×1×(2×8×300×15)=2.073×
=/u=2.073×/(72/30)=8.64
7.查图取接触疲劳寿命系数
0.90,
8.计算接触疲劳许用应力
取安全系数S=1
=675 MPa
=564MPa
9.计算试算小齿轮的分度圆直径,带入中的较小值,和比相对较小,所以==564Mpa
= mm
=42.381mm
10.计算圆周速度
=2.13m/s
11.计算齿宽b
=1×42.381mm=42.381mm
12.计算载荷系数
根据v=2.13m/s,由图查得动载荷系数=1,
齿轮圆周力
= =1.38×
=32.562N/m<100N/m
查表得=1.4
由表查得使用系数=1
由表用插值法查得7级精度、小齿轮相对支撑非对称布置时,=1.421
由=10.67,=1.404图得=1.40;故载荷系数
==1×1.05×1.4×1.421=1.987
13.按实际的载荷系数校正所得的分度圆直径 =48.819mm
14.计算模数
=1.579mm
7.2.4 按齿根弯曲疲劳强度设计
公式为
1.计算弯曲疲劳强度的重合度系数
=13.149
=1.816
=0.663
2.弯曲疲劳强度的重合度系数
=1-
=0.7221
3.计算大、小齿轮的
当量齿数
=32.841
=124.795
4.查取齿形系数
由查图10-17得=2.5,=2.2
5.查取应力校正系数
由表查得=1.65,=1.82
6.由图查得小齿轮的弯曲疲劳强度极限
小齿轮的弯曲疲劳强度=610Mpa
大齿轮的弯曲疲劳强度=490Mpa
由图取弯曲疲劳寿命系数
=0.87, =0.95
7.计算弯曲疲劳许用应力 ,弯曲疲劳劳安全系数S=1.4,则
=379.07Mpa
=332.5Mpa
展开阅读全文