1、人教版数学七年级下册 期末试卷易错题(Word版 含答案)一、选择题1的平方根是()A9B9和9C3D3和32下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3已知点P的坐标为P(3,5),则点P在第()象限A一B二C三D四4下列命题是假命题的是( )A同一平面内,两直线不相交就平行B对顶角相等C互为邻补角的两角和为180D相等的两个角一定是对顶角5如图,ABCD,12,3130,则2等于()A30B25C35D406下列计算正确的是()A2B(3)00C(2a2b)24a4b2D2a3(2a)a37如图,AB/CD,ADAC,ACD53,则BAD的度数为()A53B47C43D
2、378如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,按照这样的运动规律,点第2021次运动到点( )ABCD二、填空题9_10在平面直角坐标系中,点与点关于轴对称,则的值是_11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,EAD的度数为_.12如图,点在上,点在上,则的度数等于_13如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则_14用“”定义一种新运算:对于任意有理数a和b,规定ab=例如:(-3)2= = 2从8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,中任
3、选两个有理数做a,b(ab)的值,并计算ab,那么所有运算结果中的最大值是_15已知点,且点到两坐标轴的距离相等,则点的坐标是_16在平面直角坐标系中,对于点,我们把点叫做点的和谐点已知点的和谐点为,点的和谐点为,点的和谐点为,这样依次得到点,若点的坐标为,则点的坐标为_三、解答题17(1)计算: (2)比较 与-3的大小18求下列各式中的的值:(1); (2)19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 20如图,三
4、角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:_,_,_;(2)画出平移后三角形;(3)求三角形的面积21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数部分为b,求|ab|+的值(3)已知:9+
5、x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值24如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的
6、度数(用含n和的代数式表示)25【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)26已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,求的度数【参考答案】一、选择题1D解析:D【分析
7、】先化简,再根据平方根的地红衣求解【详解】解:=9,的平方根是,故选D【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E
8、,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可【详解】解:点P的坐标为P(3,5),点P在第四象限故选D【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-)4D【分析】根
9、据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键5B【分析】根据ABCD,3130,求得GAB3130,利用平行线的性质求得BAE180GAB18013050,由12 求出答案即可【详解】解:ABCD,3130,GAB3130,BAE+GAB180,BAE180GAB18013
10、050,12, 2BAE5025故选:B【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键6C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案【详解】A.原式2,故A错误;B.原式1,故B错误;C、(2a2b)24a4b2,计算正确;D、原式a2,故D错误;故选C【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型7D【分析】因为ADAC,所以CAD90由AB/CD,得BAC180ACD,进而求得BAD的度数【详解】解:AB/CD,ACD+BAC180CAB180ACD18053127又ADAC,C
11、AD90BADCABCAD1279037故选:D【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键8A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4解析:A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)”,根据该规律即可得出结论【详解】解:令P点第n次运动到的点为Pn点(n为自然数)观察,发现规律:
12、P0(0,0),P1(1,1),P2(2,0),P3(3,1),P4(4,0),P5(5,1),P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)202150541,P第2021次运动到点(2021,1)故选:A【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键二、填空题96【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键解析:6【分析】根据算术平方根、有理数的乘方运算即可得
13、【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键104【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.1110或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定
14、义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30=40故答案为10或40【点睛
15、】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数12180【分析】根据平行线的性质可得1=AFD,从而得到EFC=180-EFD,ECF=180-3,再根据2+ECF+EFC=180,即可得到答案【详解】解:AB解析:180【分析】根据平行线的性质可得1=AFD,从而得到EFC=180-EFD,ECF=180-3,再根据2+ECF+EFC=180,即可得到答案【详解】解:ABCD,1=AFD,EFC=180-EFD,ECF=180-3,2+ECF+EFC=180,2+360-1-3=180,1+3-2=180,故答案为:180【点睛】本题主要考查了三角
16、形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解135【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FE解析:5【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FED,又EFB=45,B=90,BEF=45,DEC=(180-45)=67.5故答案为:67.5【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键148【解析】解:
17、当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解析:8【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键15或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,且点A为,或,解得:或,点A的坐标为:或;故答案为:或解析:或;【分析】根据点A到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案【详解】解:点A到两坐标轴的距离相等,
18、且点A为,或,解得:或,点A的坐标为:或;故答案为:或;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点16【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),A解析:【分析】根据“和谐点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),A2(3,3),A3(2,2),A4(
19、3,1),A5(2,4),依此类推,每4个点为一个循环组依次循环,202145051,点A2021的坐标与A1的坐标相同,为(2,4)故答案为:【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“和谐点”的定义并求出每4个点为一个循环组依次循环是解题的关键三、解答题17(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果【详解】解:(1)原式= = =1;(2)即解析:(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果【详解】解:(1)原式= =
20、 =1;(2)即故答案为(1)-1;(2)【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键18(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了解析:(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值【详解】解:(1),或(2),【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三
21、条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,(
22、 ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键20(1),;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各
23、点的对应点,顺次连接即可得出答案;(3)将ABC补全为长方形解析:(1),;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将ABC补全为长方形,然后利用作差法求解即可【详解】解:(1)平移后的三个顶点坐标分别为:,;(2)画出平移后三角形;(3)【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时候可以先补全,再减去21(1)7;-7;(2)5;(3)13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原
24、式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求解析:(1)7;-7;(2)5;(3)13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求【详解】解:(1)78,的整数部分是7,小数部分是-7故答案为:7;-7(2)34,23,b2|a-b|+=|-3-2|+=5-+=5(3)23119+12,9+=x+y,其中x是整数,且0y1,x11,y-11+9+-2,x-y11-(-2)13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算估算无
25、理数的整数部分是解题关键二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】
26、本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交
27、MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、
28、再利用平行线性质进行求解是解答本题的关键24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的
29、度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键25DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【
30、解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,
31、DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= - 26(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H,根据EHG是DEH的外角,即可得出EHG=AED+EDG,进而得到EAF=AED+EDG; (3)设EAI=BAI=,则CHE=BAE=2,进而得出EDI=+
32、10,CDI=+5,再根据CHE是DEH的外角,可得CHE=EDH+DEK,即2=+5+10+20,求得=70,即可根据三角形内角和定理,得到EKD的度数【详解】解:(1)AED=EAF+EDG理由:如图1,过E作EHAB, ABCD, ABCDEH, EAF=AEH,EDG=DEH, AED=AEH+DEH=EAF+EDG; (2)证明:如图2,设CD与AE交于点H, ABCD, EAF=EHG, EHG是DEH的外角, EHG=AED+EDG, EAF=AED+EDG; (3)AI平分BAE, 可设EAI=BAI=,则BAE=2, 如图3,ABCD, CHE=BAE=2, AED=20,I=30,DKE=AKI, EDI=+30-20=+10, 又EDI:CDI=2:1, CDI=EDK=+5, CHE是DEH的外角, CHE=EDH+DEK, 即2=+5+10+20, 解得=70, EDK=70+10=80, DEK中,EKD=180-80-20=80【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解解题时注意:三角形的一个外角等于和它不相邻的两个内角的和