收藏 分销(赏)

七年级数学下册期末试卷易错题(Word版-含答案).doc

上传人:人****来 文档编号:4738588 上传时间:2024-10-11 格式:DOC 页数:26 大小:637.04KB 下载积分:10 金币
下载 相关 举报
七年级数学下册期末试卷易错题(Word版-含答案).doc_第1页
第1页 / 共26页
七年级数学下册期末试卷易错题(Word版-含答案).doc_第2页
第2页 / 共26页


点击查看更多>>
资源描述
七年级数学下册期末试卷易错题(Word版 含答案) 一、选择题 1.如图,直线,b被直线c所截,下列说法正确的是( ) A.∠2与∠3是同旁内角 B.∠1与∠4是同位角 C.与是同旁内角 D.∠1与∠2是内错角 2.下列哪些图形是通过平移可以得到的(  ) A. B. C. D. 3.在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中是假命题的是( ). A.等角的补角相等 B.平行于同一条直线的两条直线平行 C.对顶角相等 D.同位角相等 5.直线,直线与,分别交于点,,.若,则的度数为( ) A. B. C. D. 6.下列等式正确的是(  ) A. B. C. D. 7.如图,将一张长方形纸片沿折叠.使顶点,分别落在点,处,交于点,若,则( ) A. B. C. D. 8.在平面直角坐标系中,对于点P(x,y),我们把点P’(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),则点A2021的坐标为(  ) A.(a,b) B.(-b+1,a+1) C.(-a,-b+2) D.(b-1,-a+1) 二、填空题 9.算术平方根是的实数是___________. 10.点关于轴的对称点的坐标是__________. 11.如图,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则______. 12.如图,,平分,交于,若,则的度数是______°. 13.如图1是的一张纸条,按图1→图2→图3,把这一纸条先沿折叠并压平,再沿折叠并压平,若图2中,则图3中的度数为_______. 14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,. 按此方案,第6棵树种植点为________;第2011棵树种植点________. 15.若点P(2-m,m+1)在x轴上,则P点坐标为_____. 16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______ 三、解答题 17.计算下列各题: (1)+- (2). 18.已知,,求下列各式的值 ; 19.补全下列推理过程: 如图,已知EF//AD,∠1=∠2,∠BAC=70°,求∠AGD. 解:∵EF//AD ∴∠2=   (   ) 又∵∠1=∠2(   ) ∴∠1=∠3(   ) ∴AB//   (   ) ∴∠BAC+   =180°(   ) ∵∠BAC=70° ∴∠AGD=   . 20.如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为. (1)在图中画出平移后的三角形; (2)写出点的坐标; (3)三角形ABC的面积为 . 21.已知是的整数部分,是的小数部分,求的平方根. 二十二、解答题 22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等. (1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,) 二十三、解答题 23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN. (1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时, ①试判断PM与MN的位置关系,并说明理由; ②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线) (2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理) 24.如图1,E点在BC上,∠A=∠D,AB∥CD. (1)直接写出∠ACB和∠BED的数量关系   ; (2)如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E; (3)保持(2)中所求的∠E不变,如图3,BM平分∠ABE的邻补角∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说理由. 25.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动. (1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由. (2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由. 26.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由; 【问题迁移】 如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °. (2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC与α、β之间的数量关系,并说明理由. (图1) (图2) 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.依据同位角、内错角以及同旁内角的特征进行判断即可. 【详解】 解:A.∠2与∠3是同旁内角,故说法正确,符合题意; B.∠1与∠4不是同位角,是对顶角,故说法错误,不合题意; C.∠2与∠4不是同旁内角,是内错角,故说法错误,不合题意; D.∠1与∠2不是内错角,是同位角,故说法错误,不合题意; 故选:A. 【点睛】 本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 2.B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 解析:B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 故选:B. 【点睛】 本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键. 3.D 【分析】 设点 ,分轴和轴,两种情况讨论,即可求解. 【详解】 解:设点 , 若轴,则点P、Q的纵坐标相等, ∵线段,若点坐标是, ∴ , , 解得: 或 , ∴ 或 ; 若轴,则点P、Q的横坐标相等, ∵线段,若点坐标是, ∴ , , 解得: 或 , ∴ 或 , ∴点 或或 或 , ∴点不在第四象限. 故选:D. 【点睛】 本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键. 4.D 【分析】 根据等角的补角,平行线的性质,对顶角的性质,进行判断. 【详解】 A. 等角的补角相等,是真命题,不符合题意; B. 平行于同一条直线的两条直线平行,是真命题,不符合题意; C. 对顶角相等,是真命题,不符合题意; D. 两直线平行,同位角相等,原命题是假命题,符合题意; 故选D. 【点睛】 本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识. 5.B 【分析】 由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数. 【详解】 解:由题意,根据对顶角相等,则 , ∵, ∴, ∴, ∵, ∴, ∴; 故选:B. 【点睛】 本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出. 6.C 【分析】 根据算术平方根、立方根的定义计算即可 【详解】 A、负数没有平方根,故错误 B、表示计算算术平方根,所以,故错误 C、,故正确 D、,故错误 故选:C 【点睛】 本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.B 【分析】 根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解. 【详解】 解:∵在矩形纸片中,,, , , ∵折叠, ∴, . 故选:B. 【点睛】 本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要. 8.A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2( 解析:A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)… ∴依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505……1, ∴点A2021的坐标与A1的坐标相同,为(a,b), 故选:A. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点. 二、填空题 9.5 【分析】 根据算术平方根的定义解答即可. 【详解】 解:算术平方根是的实数是5. 故答案为:5. 【点睛】 本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个 解析:5 【分析】 根据算术平方根的定义解答即可. 【详解】 解:算术平方根是的实数是5. 故答案为:5. 【点睛】 本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键. 10.【分析】 关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】 点关于轴的对称点的坐标是, 故答案为:. 【点睛】 本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不 解析: 【分析】 关于x轴对称的点横坐标不变,纵坐标互为相反数,据此可解答. 【详解】 点关于轴的对称点的坐标是, 故答案为:. 【点睛】 本题考查了关于x轴对称的点的坐标,关于x轴对称的两个点,横坐标不变,纵坐标互为相反数. 11.90° 【分析】 过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E 解析:90° 【分析】 过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠EP1F,再同理求出∠P2,∠P3,总结规律可得. 【详解】 解:过P1作P1Q∥AB,则P1Q∥CD, ∵AB∥CD, ∴∠AEF+∠CFE=180°, ∠AEP1=∠EP1Q,∠CFP1=∠FP1Q, ∵和的角平分线交于点, ∴∠EP1F=∠EP1Q+∠FP1Q=∠AEP1+∠CFP1=(∠AEF+∠CFE)=90°; 同理可得:∠P2=(∠AEF+∠CFE)=45°, ∠P3=(∠AEF+∠CFE)=22.5°, ..., ∴, 故答案为:90°,. 【点睛】 本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解. 12.25 【分析】 根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ECD, ∵CE平分∠ACD,∠ACD=50°, ∴=25°, ∴∠1=25°, 故答案为 解析:25 【分析】 根据平行线的性质和角平分线的定义求解即可得到答案. 【详解】 解:∵AB∥CD, ∴∠1=∠ECD, ∵CE平分∠ACD,∠ACD=50°, ∴=25°, ∴∠1=25°, 故答案为:25. 【点睛】 本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 13.15° 【分析】 利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE. 【详解】 解:∵AE∥BF, ∴∠BFE=180°-∠AEF=65° 解析:15° 【分析】 利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE. 【详解】 解:∵AE∥BF, ∴∠BFE=180°-∠AEF=65°, ∵2∠BFE+∠BFC=180°, ∴∠BFC=180°-2∠BFE=50°, ∴∠CFE=∠BFE-∠BFC=15°, 故答案为:15°. 【点睛】 本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键. 14.403 【解析】 当k=6时,x6=T(1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达 解析:403 【解析】 当k=6时,x6=T(1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403. 【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键. 15.(3,0) 【分析】 根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标. 【详解】 ∵点P(2-m,m+1)在x轴上, ∴m+1=0, 解得:m=-1, ∴2-m=3, ∴P点坐标 解析:(3,0) 【分析】 根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标. 【详解】 ∵点P(2-m,m+1)在x轴上, ∴m+1=0, 解得:m=-1, ∴2-m=3, ∴P点坐标为(3,0), 故答案为:(3,0) 【点睛】 本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键. 16.(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解 解析:(8052,0). 【分析】 观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可. 【详解】 解:∵点A(﹣4,0),B(0,3), ∴OA=4,OB=3, ∴AB==5, ∴第(3)个三角形的直角顶点的坐标是; 观察图形不难发现,每3个三角形为一个循环组依次循环, ∴一次循环横坐标增加12, ∵2013÷3=671 ∴第(2013)个三角形是第671组的第三个直角三角形, 其直角顶点与第671组的第三个直角三角形顶点重合, ∴第(2013)个三角形的直角顶点的坐标是即. 故答案为:. 【点睛】 本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键. 三、解答题 17.(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 解析:(1)1 (2) 【详解】 试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可; 试题解析: (1)原式=; (2)原式=-3-0-+0.5+ = 18.(1)25;(2)37 【分析】 (1)利用完全平方差公式求解. (2)先配方,再求值. 【详解】 解:(1) (2) 【点睛】 本题考查完全平方公式及其变形式,根据公式特征进行变形是求解 解析:(1)25;(2)37 【分析】 (1)利用完全平方差公式求解. (2)先配方,再求值. 【详解】 解:(1) (2) 【点睛】 本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键. 19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得 解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110° 【分析】 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD. 【详解】 解:∵EF//AD, ∴∠2=∠3(两直线平行,同位角相等), 又∵∠1=∠2(已知), ∴∠1=∠3(等量代换), ∴AB//DG,(内错角相等,两直线平行) ∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补) ∵∠BAC=70°, ∴∠AGD=110° 故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°. 【点睛】 本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键. 20.(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面 解析:(1)见解析;(2);(3) 【分析】 (1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可; (3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可. 【详解】 (1)如图所示,三角形即为所求; (2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1); (3)三角形ABC的面积为:4×5-×2×4-×1×3-×3×5=7. 【点睛】 本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.【分析】 先进行估算的范围,确定a,b的值,再代入代数式即可解答. 【详解】 解:∵, ∴的整数部分为2,小数部分为, 且. ∴的整数部分为4. ∴, ∴. 【点睛】 本题考查了估算无理数的大小, 解析: 【分析】 先进行估算的范围,确定a,b的值,再代入代数式即可解答. 【详解】 解:∵, ∴的整数部分为2,小数部分为, 且. ∴的整数部分为4. ∴, ∴. 【点睛】 本题考查了估算无理数的大小,解决本题的关键是估算的范围. 二十二、解答题 22.(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个 解析:(1);(2)不同意,理由见解析 【分析】 (1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值; (2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答. 【详解】 解:(1)设正方形边长为,则,由算术平方根的意义可知, 所以正方形的边长是. (2)不同意. 因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为, 所以,即两个正方形边长的和大于长方形的长, 所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片. 【点睛】 本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 二十三、解答题 23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【分析】 (1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条 解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【分析】 (1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN; ②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解; (2)分三种情况讨论,利用平行线的性质即可解决. 【详解】 解:(1)①PM⊥MN,理由见解析: ∵AB//CD, ∴∠APM=∠PMQ, ∵∠APM+∠QMN=90°, ∴∠PMQ +∠QMN=90°, ∴PM⊥MN; ②过点N作NH∥CD, ∵AB//CD, ∴AB// NH∥CD, ∴∠QMN=∠MNH,∠EPA=∠ENH, ∵PA平分∠EPM, ∴∠EPA=∠ MPA, ∵∠APM+∠QMN=90°, ∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°, ∴∠MNQ +∠MNH +∠MNH=90°, ∵∠MNQ=20°, ∴∠MNH=35°, ∴∠EPA=∠ENH=∠MNQ +∠MNH=55°, ∴∠EPB=180°-55°=125°, ∴∠EPB的度数为125°; (2)当点M,N分别在射线QC,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM=∠PMQ, ∴∠APM +∠QMN=90°; 当点M,N分别在射线QC,线段PQ上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMN=90°,∠APM=∠PMQ, ∴∠PMQ -∠QMN=90°, ∴∠APM -∠QMN=90°; 当点M,N分别在射线QD,QF上时,如图: ∵PM⊥MN,AB//CD, ∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°, ∴∠APM+90°-∠QMN=180°, ∴∠APM -∠QMN=90°; 综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键. 24.(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠A 解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40° 【分析】 (1)如图1,延长DE交AB于点F,根据ABCD可得∠DFB=∠D,则∠DFB=∠A,可得ACDF,根据平行线的性质得∠ACB+∠CEF=180°,由对顶角相等可得结论; (2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据∠DEB比∠DHB大60°,列出等式即可求∠DEB的度数; (3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求∠PBM的度数. 【详解】 解:(1)如图1,延长交于点, , , , , , , , 故答案为:; (2)如图2,作,, , , ,, 平分, , , , , , , 平分, , , , , 设, , 比大, , , 解得. 的度数为; (3)的度数不变,理由如下: 如图3,过点作,设直线和直线相交于点, 平分,平分, , , ,, , , , , 由(2)可知:, , , , , , . 【点睛】 本题考查了平行线的性质,解决本题的关键是掌握平行线的性质. 25.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°. 【分析】 第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°. 【分析】 第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小. 第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解. 【详解】 解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下: ∵m⊥n, ∴∠AOB=90°, ∵在△ABO中,∠AOB+∠ABO+∠BAO=180°, ∴∠ABO+∠BAO=90°, 又∵AQ、BQ分别是∠BAO和∠ABO的角平分线, ∴∠BAQ=∠BAC,∠ABQ=∠ABO, ∴∠BAQ+∠ABQ= (∠ABO+∠BAO)= 又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°, ∴∠AQB=180°﹣45°=135°. (2)如图2所示: ①∠P的大小不发生变化,其原因如下: ∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180° ∠BAQ+∠ABQ=90°, ∴∠ABF+∠EAB=360°﹣90°=270°, 又∵AP、BP分别是∠BAE和∠ABP的角平分线, ∴∠PAB=∠EAB,∠PBA=∠ABF, ∴∠PAB+∠PBA= (∠EAB+∠ABF)=×270°=135°, 又∵在△PAB中,∠P+∠PAB+∠PBA=180°, ∴∠P=180°﹣135°=45°. ②∠C的大小不变,其原因如下: ∵∠AQB=135°,∠AQB+∠BQC=180°, ∴∠BQC=180°﹣135°, 又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180° ∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF, ∴∠PBQ=∠ABQ+∠PBA=90°, 又∵∠PBC=∠PBQ+∠CBQ=180°, ∴∠QBC=180°﹣90°=90°. 又∵∠QBC+∠C+∠BQC=180°, ∴∠C=180°﹣90°﹣45°=45° 【点睛】 本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题. 26.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析. 【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C 解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α – β,理由见解析. 【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案; (2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案. 【问题探究】解:∠DPC=α+β 如图, 过P作PH∥DF ∵DF∥CE, ∴∠PCE=∠1=α, ∠PDF=∠2 ∵∠DPC=∠2+∠1=α+β 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,∠DPC=β -α ∵DF∥CE, ∴∠PCE=∠1=β, ∵∠DPC=∠1-∠FDP=∠1-α. ∴∠DPC=β -α 如图2,∠DPC= α -β ∵DF∥CE, ∴∠PDF=∠1=α ∵∠DPC=∠1-∠ACE=∠1-β. ∴∠DPC=α - β
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服