1、1将下列各式分解因式(1)3p26pq;(2)2x2+8x+8【分析】(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解【解答】(1)3p26pq=3p(p2q),(2)2x2+8x+8=2(x2+4x+4)=2(x+2)22将下列各式分解因式(1)x3yxy (2)3a36a2b+3ab2【分析】(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可【解答】(1)原式=xy(x21)=xy(x+1)(x1);(2)原式=3a(a22ab+b2)=3a(ab)23分解因式(1)a2(xy
2、)+16(yx);(2)(x2+y2)24x2y2【分析】(1)先提取公因式(xy),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解【解答】(1)a2(xy)+16(yx)=(xy)(a216)=(xy)(a+4)(a4);(2)(x2+y2)24x2y2=(x2+2xy+y2)(x22xy+y2),=(x+y)2(xy)24分解因式:(1)2x2x;(2)16x21;(3)6xy29x2yy3;(4)4+12(xy)+9(xy)2【分析】(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式y,再对余下的多项式利用完全平方公式继续分解;
3、(4)把(xy)看作整体,利用完全平方公式分解因式即可【解答】(1)2x2x=x(2x1);(2)16x21=(4x+1)(4x1);(3)6xy29x2yy3=y(9x26xy+y2)=y(3xy)2;(4)4+12(xy)+9(xy)2=2+3(xy)2=(3x3y+2)25因式分解:(1)2am28a;(2)4x3+4x2y+xy2【分析】(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解【解答】(1)2am28a=2a(m24)=2a(m+2)(m2);(2)4x3+4x2y+xy2=x(4x2+4xy+y2)=x
4、(2x+y)26将下列各式分解因式:(1)3x12x3(2)(x2+y2)24x2y2【分析】(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式【解答】(1)3x12x3=3x(14x2)=3x(1+2x)(12x);(2)(x2+y2)24x2y2=(x2+y2+2xy)(x2+y22xy)=(x+y)2(xy)27因式分解:(1)x2y2xy2+y3;(2)(x+2y)2y2【分析】(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可【解答】(1)x2
5、y2xy2+y3=y(x22xy+y2)=y(xy)2;(2)(x+2y)2y2=(x+2y+y)(x+2yy)=(x+3y)(x+y)8对下列代数式分解因式:(1)n2(m2)n(2m);(2)(x1)(x3)+1【分析】(1)提取公因式n(m2)即可;(2)根据多项式的乘法把(x1)(x3)展开,再利用完全平方公式进行因式分解【解答】(1)n2(m2)n(2m)=n2(m2)+n(m2)=n(m2)(n+1);(2)(x1)(x3)+1=x24x+4=(x2)29分解因式:a24a+4b2【分析】本题有四项,应该考虑运用分组分解法观察后可以发现,本题中有a的二次项a2,a的一次项4a,常数
6、项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解【解答】a24a+4b2=(a24a+4)b2=(a2)2b2=(a2+b)(a2b)10分解因式:a2b22a+1【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题中有a的二次项,a的一次项,有常数项所以要考虑a22a+1为一组【解答】a2b22a+1=(a22a+1)b2=(a1)2b2=(a1+b)(a1b)11把下列各式分解因式:(1)x47x2+1;(2)x4+x2+2ax+1a2(3)(1+y)22x2(1y2)+x4(1y)2(4)x4+2x3+3x2+2x+1【分析】(1)首先把7x2变为
7、+2x29x2,然后多项式变为x42x2+19x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1x2+2axa2,然后利用公式法分解因式即可解;(3)首先把2x2(1y2)变为2x2(1y)(1y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2+x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解【解答】(1)x47x2+1=x4+2x2+19x2=(x2+1)2(3x)2=(x2+3x+1)(x23x+1);(2)x4+x2+2ax+1a=x4+2x2+1x2+2axa2=(x2+1)-(xa
8、)2=(x2+1+xa)(x2+1x+a);(3)(1+y)22x2(1y2)+x4(1y)2=(1+y)22x2(1y)(1+y)+x4(1y)2=(1+y)22x2(1y)(1+y)+x2(1y)2=(1+y)x2(1y)2=(1+y-x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2+x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)212把下列各式分解因式:(1)4x331x+15;(2)2a2b2+2a2c2+2b2c2a4b4c4;(3)x5+x+1;(4)x3+5x2+3x9;【分析】(1)需把31x拆项为x
9、30x,再分组分解;(2)把2a2b2拆项成4a2b22a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x9拆项成(x3x2)+(6x26x)+(9x9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底【解答】(1)4x331x+15=4x3x30x+15=x(2x+1)(2x1)15(2x1)=(2x1)(2x2+115)=(2x1)(2x5)(x+3);(2)2a2b2+2a2c2+2b2c2a4b4c4=4a2b2(a4+b4+c4+2a2b22a2c22b2c2)=(2ab)2(a2+b2c2)2=(2ab+a2+b2c2)(2aba2b2+c2)=(a+b+c)(a+bc)(c+ab)(ca+b);(3)x5+x+1=x5x2+x2+x+1=x2(x31)+(x2+x+1)=x2(x1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3x2+1);(4)x3+5x2+3x9=(x3x2)+(6x26x)+(9x9)=x2(x1)+6x(x1)+9(x1)=(x1)(x+3)2;