资源描述
石家庄市第八十一中七年级下册数学期末试卷培优测试卷
一、解答题
1.已知,AB∥DE,点C在AB上方,连接BC、CD.
(1)如图1,求证:∠BCD+∠CDE=∠ABC;
(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;
(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.
2.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
3.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
4.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
5.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
二、解答题
6.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且.
(1)填空:_________;
(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
7.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出.
(1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由;
(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程.
(3)若,,,请直接写出此时的度数.
8.如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后与重合?
(2)如图2,经过秒后,,求此时的值.
(3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由.
(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由.
9.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
10.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)①∠ABN的度数是 ;②∵AM∥BN,∴∠ACB=∠ ;
(2)求∠CBD的度数;
(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;
(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
三、解答题
11.如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、.
(1)当点与点、在一直线上时,,,则_____.
(2)若点与点、不在一直线上,试探索、、之间的关系,并证明你的结论.
12.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且
(1)直接写出的面积 ;
(2)如图②,若,作的平分线交于,交于,试说明;
(3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.
13.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
14.已知在中,,点在上,边在上,在中,边在直线上,;
(1)如图1,求的度数;
(2)如图2,将沿射线的方向平移,当点在上时,求度数;
(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.
15.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、解答题
1.(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质
解析:(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;
(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.
【详解】
证明:(1)如图,过点作,
,
,
,
,即,
,
;
(2)如图,过点作,
,
,
,
,即,
,
,
,
,
;
(3)如图,过点作,延长至点,
,
,
,
,
平分,平分,
,
由(2)可知,,
,
又,
.
【点睛】
本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
2.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的
解析:(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
3.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°.
∴∠PDE=60°−45°=15°,
故答案为:15°;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,
∴∠LFA=∠BAC=45°,∠RHG=∠QGH,
∵FL∥MN,HR∥PQ,PQ∥MN,
∴FL∥PQ∥HR,
∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,
∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,
∴∠QGH=∠FGQ,∠HFA=∠GFA,
∵∠DFE=30°,
∴∠GFA=180°−∠DFE=150°,
∴∠HFA=∠GFA=75°,
∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,
∴∠GFL=∠GFA−∠LFA=150°−45°=105°,
∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,
∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;
(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,
∴D′A=DF,DD′=EE′=AF=5cm,
∵DE+EF+DF=35cm,
∴DE+EF+D′A+AF+DD′=35+10=45(cm),
即四边形DEAD′的周长为45cm;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,
分三种情况:
BC∥DE时,如图5,此时AC∥DF,
∴∠CAE=∠DFE=30°,
∴3t=30,
解得:t=10;
BC∥EF时,如图6,
∵BC∥EF,
∴∠BAE=∠B=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°,
∴3t=90,
解得:t=30;
BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,
∵∠DRM=∠EAM+∠DFE=45°+30°=75°,
∴∠BKA=∠DRM=75°,
∵∠ACK=180°−∠ACB=90°,
∴∠CAK=90°−∠BKA=15°,
∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,
∴3t=120,
解得:t=40,
综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.
【点睛】
本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.
4.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于
解析:(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
5.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
二、解答题
6.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,
解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【详解】
解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,
∴∠BAN=180°×=72°,
故答案为:72;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1•(30+t),
解得 t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1•(30+t)+(2t-180)=180,
解得 t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°-2t,
∴∠BAC=72°-(180°-2t)=2t-108°,
又∵∠ABC=108°-t,
∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,
∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点睛】
本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
7.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C
解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;
(2)根据题意作AB∥CD,即可∠B=∠C=35°;
(3)分别画图,根据平行线的性质计算出∠B的度数.
【详解】
解:(1)AB平行于ED,理由如下:
如图2,过点C作CF∥AB,
∴∠BCF=∠B=50°,
∵∠BCD=85°,
∴∠FCD=85°-50°=35°,
∵∠D=35°,
∴∠FCD=∠D,
∴CF∥ED,
∵CF∥AB,
∴AB∥ED;
(2)如图,即为所求作的图形.
∵AB∥CD,
∴∠ABC=∠C=35°,
∴∠B的度数为:35°;
∵A′B∥CD,
∴∠ABC+∠C=180°,
∴∠B的度数为:145°;
∴∠B的度数为:35°或145°;
(3)如图2,过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∴∠B=∠BCF=50°.
答:∠B的度数为50°.
如图5,过C作CF∥AB,则AB∥CF∥CD,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∵AB∥CF,
∴∠B+∠BCF=180°,
∴∠B=130°;
如图6,∵∠C=85°,∠D=35°,
∴∠CFD=180°-85°-35°=60°,
∵AB∥DE,
∴∠B=∠CFD=60°,
如图7,同理得:∠B=35°+85°=120°,
综上所述,∠B的度数为50°或130°或60°或120°.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.
8.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3
解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;
(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.
【详解】
解:(1)∵30÷3=10,
∴10秒后ON与OC重合;
(2)∵MN∥AB
∴∠BOM=∠M=30°,
∵∠AON+∠BOM=90°,
∴∠AON=60°,
∴t=60÷3=20
∴经过t秒后,MN∥AB,t=20秒.
(3)如图3所示:
∵∠AON+∠BOM=90°,∠BOC=∠BOM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,则∠AOC=30°+6t,
∵OC与OM重合,
∵∠AOC+∠BOC=180°,
可得:(30°+6t)+(90°-3t)=180°,
解得:t=20秒;
即经过20秒时间OC与OM重合;
(4)如图4所示:
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,
∴∠BOC=∠COM=∠BOM=(90°-3t),
由题意得:180°-(30°+6t)=( 90°-3t),
解得:t=秒,
即经过秒OC平分∠MOB.
【点睛】
此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
9.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
10.(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的
解析:(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;
(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;
(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.
【详解】
解:(1)①∵AM//BN,∠A=64°,
∴∠ABN=180°﹣∠A=116°,
故答案为:116°;
②∵AM//BN,
∴∠ACB=∠CBN,
故答案为:CBN;
(2)∵AM//BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°﹣64°=116°,
∴∠ABP+∠PBN=116°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=116°,
∴∠CBD=∠CBP+∠DBP=58°;
(3)不变,
∠APB:∠ADB=2:1,
∵AM//BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(4)∵AM//BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,
则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN
∴∠ABC=∠DBN,
由(1)∠ABN=116°,
∴∠CBD=58°,
∴∠ABC+∠DBN=58°,
∴∠ABC=29°,
故答案为:29°.
【点睛】
本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.
三、解答题
11.(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.
【分析】
(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出
解析:(1)120°;(2)∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,证明见详解.
【分析】
(1)根据题意,当点与点、在一直线上时,作出图形,由AB∥CD,∠FHP=60°,可以推出=60°,计算∠PFD即可;
(2)根据点P是动点,分三种情况讨论:①当点P在AB与CD之间时;②当点P在AB上方时;③当点P在CD下方时,分别求出∠AEP、∠EPF、∠CFP之间的关系即可.
【详解】
(1)当点与点、在一直线上时,作图如下,
∵AB∥CD,∠FHP=60°,,
∴=∠FHP=60°,
∴∠EFD=180°-∠GEP=180°-60°=120°,
∴∠PFD=120°,
故答案为:120°;
(2)满足关系式为∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.
证明:根据点P是动点,分三种情况讨论:
①当点P在AB与CD之间时,
过点P作PQ∥AB,如下图,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠AEP=∠EPQ,∠CFP=∠FPQ,
∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,
即∠EPF =∠AEP+∠CFP;
②当点P在AB上方时,如下图所示,
∵∠AEP=∠EPF+∠EQP,
∵AB∥CD,
∴∠CFP=∠EQP,
∴∠AEP=∠EPF+∠CFP;
③当点P在CD下方时,
∵AB∥CD,
∴∠AEP=∠EQF,
∴∠EQF=∠EPF+∠CFP,
∴∠AEP=∠EPF+∠CFP,
综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,
故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.
【点睛】
本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.
12.(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠
解析:(1)3; (2)见解析; (3)见解析
【详解】
分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.
(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.
详解:(1)S△BCD=CD•OC=×3×2=3.
(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.
(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC
∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA
∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.
点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.
13.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
14.(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得
解析:(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得出结论.
【详解】
解:(1),
,
,
,
,
;
(2)由(1)知,,
,
,
,
;
(3)当时,如图3,
由(1)知,,
;
当时,如图4,
,
点,重合,
,
,
由(1)知,,
,
即当以、、为顶点的三角形是直角三角形时,度数为或.
【点睛】
此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.
15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行
解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行线的性质即可得到结论;
(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.
【详解】
解:(1)直线l2⊥l1,l3⊥l1,
∴l2∥l3,
即l2与l3的位置关系是互相平行,
故答案为:互相平行;
(2)∵CE平分∠BCD,
∴∠BCE=∠D
展开阅读全文