资源描述
人教版中学七年级数学下册期末复习(附答案)
一、选择题
1.的算术平方根为()
A. B. C. D.
2.下列图案中,是通过下图平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在同一平面内,下列命题是假命题的是( )
A.过直线外一点有且只有一条直线与已知直线相交
B.已知,,三条直线,若,,则
C.过直线外一点有且只有一条直线与已知直线垂直
D.若三条直线两两相交,则它们有一个或三个交点
5.如图,点E在BA的延长线上,能证明BE∥CD是( )
A.∠EAD=∠B B.∠BAD=∠BCD C.∠EAD=∠ADC D.∠BCD+∠D=180°
6.下列各组数中,互为相反数的是( )
A.与 B.与 C.与 D.与
7.一副直角三角尺如图摆放,点D在BC的延长线上,点E在AC上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )
A.10° B.15° C.20° D.25°
8.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到各点.若A2021的坐标为(﹣3,2),设A1(x,y),则x+y的值是( )
A.﹣5 B.3 C.﹣1 D.5
九、填空题
9.100的算术平方根是_____.
十、填空题
10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______
十一、填空题
11.若点A(9﹣a,3﹣a)在第二、四象限的角平分线上,则A点的坐标为_____.
十二、填空题
12.如图,∠ABC与∠DEF的边BC与DE相交于点G,且BA//DE,BC//EF,如果∠B=54°,那么∠E=__________.
十三、填空题
13.如图,在△ABC中,∠ACB=90°,∠A<∠B,点D为AB边上一点且不与A、B重合,将△ACD沿CD翻折得到△ECD,直线CE与直线AB相交于点F.若∠A=α,当△DEF为等腰三角形时,∠ACD=__________________.(用α的代数式表示∠ACD)
十四、填空题
14.已知M是满足不等式的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为________.
十五、填空题
15.如图,直角坐标系中、两点的坐标分别为,,则该坐标系内点的坐标为__________.
十六、填空题
16.如图,点,,,,,……根据这个规律,探究可得点的坐标是________.
十七、解答题
17.计算题
(1). (2);
十八、解答题
18.求下列各式中的值:
(1);
(2).
十九、解答题
19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.
(1)如图1,已知与中,,,与相交于点.问:与有何关系?
①请完成下面的推理过程.
理由:,
.
,
.
.
②结论:与关系是 .
(2)如图2,已知,,则与有何关系?请直接写出你的结论.
(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .
二十、解答题
20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方,
(1)公交车站的坐标是 ,宠物店的坐标是 ;
(2)在图中标出公园,书店的位置;
(3)将医院的位置怎样平移得到人寿保险公司的位置.
二十一、解答题
21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分.
请解答下列问题:
(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b-的值;
(3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
二十二、解答题
22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
二十三、解答题
23.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
二十四、解答题
24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)①如图1,∠DPC= 度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°旋转360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.
(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.
二十五、解答题
25.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据算术平方根的定义求解.
【详解】
解:因为,
所以的算术平方根为.
故选C.
【点睛】
本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.
2.C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变
解析:C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点(3,-2)所在象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.
【详解】
解:、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题;
、在同一平面内,已知,,三条直线,若,,则,是真命题;
、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题;
、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题;
故选:.
【点睛】
本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.
5.C
【分析】
根据平行线的判定定理对四个选项进行逐一判断即可.
【详解】
解:A、若∠EAD=∠B,则AD∥BC,故此选项错误;
B、若∠BAD=∠BCD,不可能得到BE∥CD,故此选项错误;
C、若∠EAD=∠ADC,可得到BE∥CD,故此选项正确;
D、若∠BCD+∠D=180°,则BC∥AD,故此选项错误.
故选:C.
【点睛】
本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键.
6.C
【分析】
根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.
【详解】
A、,则与不是相反数,此项不符题意;
B、与不是相反数,此项不符题意;
C、,则与互为相反数,此项符合题意;
D、,则与不是相反数,此项不符题意;
故选:C.
【点睛】
本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.
7.B
【分析】
由∠B=∠EDF=90°,∠A=30°,∠F=45°,利用三角形内角和定理可得出∠ACB=60°,∠DEF=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠CEF的度数,结合∠CED=∠CEF-∠DEF,即可求出∠CED的度数,此题得解.
【详解】
解:∵∠B=90°,∠A=30°,
∴∠ACB=60°.
∵∠EDF=90°,∠F=45°,
∴∠DEF=45°.
∵EF∥BC,
∴∠CEF=∠ACB=60°,
∴∠CED=∠CEF-∠DEF=60°-45°=15°.
故选:B.
【点睛】
本题考查了三角形内角和定理以及平行线的性质,牢记平行线的性质是解题的关键.
8.C
【分析】
列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.
【
解析:C
【分析】
列出部分An点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论;根据以上结论和A2021的坐标为(﹣3,2),找出A1的坐标,由此即可得出x、y的值,二者相加即可得出结论.
【详解】
解:∵A2021的坐标为(﹣3,2),
根据题意可知:
A2020的坐标为(﹣3,﹣2),
A2019的坐标为(1,﹣2),
A2018的坐标为(1,2),
A2017的坐标为(﹣3,2),
…
∴A4n+1(﹣3,2),A4n+2(1,2),A4n+3(1,﹣2),A4n+4(﹣3,﹣2)(n为自然数).
∵2021=505×4•••1,
∵A2021的坐标为(﹣3,2),
∴A1(﹣3,2),
∴x+y=﹣3+2=﹣1.
故选:C.
【点睛】
本题考查了规律型中的点的坐标的变化,解决该题型题目时,根据友好点的定义列出部分点的坐标,根据坐标的变化找出变化规律是关键.
九、填空题
9.10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
解析:10
【分析】
根据算术平方根的定义进行计算,即可得到答案.
【详解】
解:∵102=100,
∴=10.
故答案为:10.
【点睛】
本题考查了算术平方根的定义,解题的关键是熟练掌握定义.
十、填空题
10.a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-
解析:a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),
点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),
则a=3,b=-4.
【点睛】
此题考查关于x轴、y轴对称的点的坐标,难度不大
十一、填空题
11.(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标
解析:(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标为(3,﹣3).
故答案为:(3,﹣3).
【点睛】
本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.
十二、填空题
12.126°
【分析】
根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.
【详解】
BA//DE,BC//EF,
,
∠B=54°,
,
故答案为:126°.
【点睛】
本题考查
解析:126°
【分析】
根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.
【详解】
BA//DE,BC//EF,
,
∠B=54°,
,
故答案为:126°.
【点睛】
本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键.
十三、填空题
13.或或
【分析】
若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.
【详解】
解:由翻折的性质可知,,
如图1,
当时,则,
,,
,
,
当时,为等腰三角形,
故答案
解析:或或
【分析】
若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.
【详解】
解:由翻折的性质可知,,
如图1,
当时,则,
,,
,
,
当时,为等腰三角形,
故答案为.
当时,;
,
,
,;
,
,
如图2,
当时,;
,,
;
当或或时,为等腰三角形,
故答案为:或或.
【点睛】
本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理.
十四、填空题
14.±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的
解析:±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的最大整数,
∴N=2,
∴M+N的平方根为:±=±2.
故答案为:±2.
【点睛】
此题主要考查了估计无理数的大小,得出M,N的值是解题关键.
十五、填空题
15.【分析】
首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可.
【详解】
解:点C的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正
解析:
【分析】
首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可.
【详解】
解:点C的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正确建立坐标系.
十六、填空题
16.【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、
解析:
【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,
,
故点坐标是.
故答案是:.
【点睛】
本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.
十七、解答题
17.(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
解析:(1)1;(2).
【分析】
(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;
(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.
十八、解答题
18.(1)或;(2)
【分析】
(1)根据平方根的性质求解即可;
(2)根据立方根的性质求解即可;
【详解】
(1),
,
,
或,
∴或;
(2),
,
;
【点睛】
本题主要考查了平方根的性质应用和
解析:(1)或;(2)
【分析】
(1)根据平方根的性质求解即可;
(2)根据立方根的性质求解即可;
【详解】
(1),
,
,
或,
∴或;
(2),
,
;
【点睛】
本题主要考查了平方根的性质应用和立方根的性质应用,准确计算是解题的关键.
十九、解答题
19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.
【分析】
(1)如图1,根据,,即可得与的关系;
(2)如图2,根据
解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.
【分析】
(1)如图1,根据,,即可得与的关系;
(2)如图2,根据,,即可得与的关系;
(3)由(1)(2)即可得出结论.
【详解】
解:(1)①理由:,
(两直线平行,同旁内角互补),
,
(两直线平行,同位角相等),
.
②结论:与关系是互补.
故答案为:①;两直线平行,同旁内角互补;两直线平行,同位角相等;;②相等.
(2),理由如下:
,
,
,
,
.
(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,
故答案为:这两个角互补或相等.
【点睛】
本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.
二十、解答题
20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位
【分析】
(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即
解析:(1),;(2)见解析;(3)向右5个单位,再向上5个单位
【分析】
(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即可求解;
(2)公园在第二象限内,距离 轴2个单位,距离 轴3个单位;
书店在第一象限内,距离 轴1个单位,距离 轴1个单位;即可解答;
(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.
【详解】
解:(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位,故公交车站的坐标是;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,故宠物店的坐标是;
(2)∵公园,书店
∴公园在第二象限内,距离 轴2个单位,距离 轴3个单位;
书店在第一象限内,距离 轴1个单位,距离 轴1个单位;
位置如图所示:
(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.
【点睛】
本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.
二十一、解答题
21.(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解
解析:(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解】
(1),
的整数部分为3,小数部分为;
(2),
的整数部分为2,小数部分为,
,
,
的整数部分为3,
,
;
(3),
的整数部分为1,小数部分为,
10+=x+y,其中x是整数,且0<y<1,
,
的相反数是:.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
二十二、解答题
22.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二十三、解答题
23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
二十四、解答题
24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和
解析:(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;
(2)分两种情况讨论:当在上方时,当在下方时,①分别用含的代数式表示,从而可得的值;②分别用含的代数式表示,得到是一个含的代数式,从而可得答案.
【详解】
解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,
∴∠DPC=180﹣30﹣60=90°,
故答案为90;
②如图1﹣1,当BD∥PC时,
∵PC∥BD,∠DBP=90°,
∴∠CPN=∠DBP=90°,
∵∠CPA=60°,
∴∠APN=30°,
∵转速为10°/秒,
∴旋转时间为3秒;
如图1﹣2,当PC∥BD时,
∵∠PBD=90°,
∴∠CPB=∠DBP=90°,
∵∠CPA=60°,
∴∠APM=30°,
∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,
∵转速为10°/秒,
∴旋转时间为21秒,
如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,
∵PA∥BD,
∴∠DBP=∠APN=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°,
∵转速为10°/秒,
∴旋转时间为9秒,
如图1﹣4,当PA∥BD时,
∵∠DPB=∠ACP=30°,
∴AC∥BP,
∵PA∥BD,
∴∠DBP=∠BPA=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,
∵转速为10°/秒,
∴旋转时间为27秒,
如图1﹣5,当AC∥DP时,
∵AC∥DP,
∴∠C=∠DPC=30°,
∴∠APN=180°﹣30°﹣30°﹣60°=60°,
∴三角板PAC绕点P逆时针旋转的角度为60°,
∵转速为10°/秒,
∴旋转时间为6秒,
如图1﹣6,当时,
∴三角板PAC绕点P逆时针旋转的角度为
∵转速为10°/秒,
∴旋转时间为秒,
如图1﹣7,当AC∥BD时,
∵AC∥BD,
∴∠DBP=∠BAC=90°,
∴点A在MN上,
∴三角板PAC绕点P逆时针旋转的角度为180°,
∵转速为10°/秒,
∴旋转时间为18秒,
当时,如图1-3,1-4,旋转时间分别为:,
综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;
(2)如图,当在上方时,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.
∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
当在下方时,如图,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM= ∠APN=3t.
∴∠CPD=
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
综上:①正确,②错误.
【点睛】
本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.
二十五、解答题
25.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
展开阅读全文