1、八年级数学直角三角形单元测试题姓名: 得分: 一、选择题(30分)1. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长(A)4 cm (B)8 cm (C)10 cm(D)12 cm2. 已知一个Rt的两边长分别为3和4,则第三边长的平方是() (A)25(B)14(C)7(D)7或253. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A)13 (B)8 (C)25 (D)644. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) 5. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
2、(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形 (D) 等腰三角形.6. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )(A) 25 (B) 12.5 (C) 9 (D) 8.57.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距_北南A东 A 25海里 B 30海里 C 35海里 D 40海里8.已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为()A.直角三角形B.等腰三角形 C.等腰直角三角形D.等腰三角形或直角三角形9.如
3、图,MPNP,MQ为MNP的角平分线,MTMP,连接TQ,则下列结论中不正确的是()A、TQPQB、MQTMQPC、QTN90D、NQTMQT10.在ABC中, A: B: C=1:2:3,CDAB于D,AB=,则DB等于( ) A. B. C. D.以上结果都不对二、填空题(30分)AEDCB1、直角三角形中一个锐角为30,斜边和最小的边的和为12cm,则斜边长为 .2.如右图,已知BAC=90,C=30,ADBC于D,DEAB于E,BE=1,则BC= . 3.三角形的三条角平分线相交于一点,并且这一点到_相等4.点O是ABC内一点,且点O到三边的距离相等,A=60,则BOC的度数为_5.A
4、OB的平分线上一点M ,M到 OA的距离为1.5 cm,则M到OB的距离为_.6.如图,有一个直角ABC,C=90,AC=10,BC=5,一条线段PQ=AB,P.Q两点分别在AC和过点A且垂直于AC的射线AX上运动,当AP= 时,才能使ABCPQA.7.如图,在ABC中,C90,ACBC,AD平分CAB,交BC于 D,DEAB于E,且AB6 cm,则DEB的周长为_cm.ABCD7cmPQCABx8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为_cm2。DBCA9.已知x、y为正数,且x2-4+(y2-3)2=0
5、,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为_。10.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_米。三、解答题(60分)ABCDEF121.已知:如图,AC平分BAD,CEAB于E,CFAD于F,且BCDC.你能说明BE与DF相等吗?ABCD2.已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且A=90,求四边形ABCD的面积。3、如图,在锐角三角形ABC中,ADBC于D,E、F、G
6、分别是AC、AB、BC的中点。 求证:四边形OEFG是等腰梯形。4.如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点 求证:MNDEAB小河东北牧童小屋5.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 17km6.如图,在ABC中,AB=AC,DE是过点A的直线,BDDE于D,CEDE于E(1)若BC在DE的同侧(如图)且AD=CE,说明:BAAC(2)若BC在DE的两侧(如图)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由 7、如图,四边形ABCD中,DAB=DCB=90o,点M、N分别是BD、AC的中点。MN、AC的位置关系如何?证明你的猜想。4