1、乘法交换律和结合律一、复习旧知导入新课1、出示:在内填上合适的数吗?28+320=320+;+=+(27+138)+62=27+(+);提问:谁来说说填数的依据是什么?什么是加法交换律和结合律?(板书)2、猜一猜,乘法可能有那些运算律?(板书) 你有什么办法来验证自己的猜想?(举例验证)二、举例验证探索规律(一)探索乘法交换律。1、出示苹果图。(略) (1)谈话:你能帮老师算一算一共有多少个苹果吗?还可怎样列式?(板书:35=15(个)53=15(个)(2)提问:这两道算式都是求什么?你能用符号把它们连接起来吗?(板书:35=53)2、举例验证。(1)等号两边什么变了?什么没变? 你还能写出这
2、样的等式吗? 你发现了什么规律?(两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。)你能把符合规律的等式都写出来吗?为什么?(板书:)(2)提示:你能用一个等式概括以上所有的等式吗?(板书:ab=ba。)提问:这里的a和b表示什么? 3、回忆乘法交换律在过去学习中的运用。()谈话:其实,乘法交换律早就是我们的朋友了,还记得乘法口诀吗?谁来说一句?根据这句口诀说两道乘法算式?这里应用了什么?()笔算,为了检验结果是否正确,怎样进行验算?这里又应用了什么?(二)探索乘法结合律。1、自主探究。()谈话:刚才我们通过用两种方法解决实际问题,再通过举例的方法验证了乘法有交换律这个结论(板书:解决
3、问题举例验证结论),接下来请同学们用这些方法自己来继续研究乘法是否有结合律。()自主举例验证,指名板演。2、引导比较。()提问:谁来说一说列式的解题思路?()提问:比较等号两边的算式,有什么相同点和不同点? ()读一读举例的等式是不是符合这个规律?它们都有什么规律?(三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,这叫做乘法的结合律。)()用字母表示,齐读(ab)c=a(bc)。(5)问:通过举例验证,你们发现乘法和加法一样,都有交换律和结合律。(板书:乘法)三、尝试运用理解规律1、做“想想做做”第1题。问:最后一题应用了什么运算律?小结:由此可见,乘法交换律和结合律可以同时应用。
4、这就是说,三个数相乘,可以任意交换乘数的位置,也可以任意先把其中两个数相乘,结果不变。2、判断:下面两道算式是否相等,为什么?()问:如果让你来参加计算比赛,你会选哪一题?为什么?如果让你计算,你还会按原来的顺序从左往右计算吗?怎样算?(板书计算过程)小结:三个数相乘,如果哪两个数相乘可凑成整十整百数,我们可以先把这两个数相乘。由此可见,应用乘法交换律和结合律可使计算简便。3、出示第62页的“试一试”,学生尝试简便运算。指名学生板演。4、做“想想做做”第3题。(1)问:你怎么算的?(2)补充气球:25、4、9 3625的结果是多少?你怎么想的?25的好朋友是几?(3)快速算一算:2528,这里
5、应用了什么运算律?四、总结。问:这节课我们一起研究了什么内容?有什么作用?五、引发联想,鼓励探究谈话:同学们,今天我们通过猜想、举例验证的方法研究了乘法的交换律和结合律,既然加法和乘法都有交换律和结合律,那你有没有想过减法和除法会有什么运算规律呢?你可以选择下面的一组或几组算式先计算,然后再观察、比较,看你能不能有新的猜想?你有办法验证你的猜想吗?127-53-27218-69-31127-27-53218-(69+31)72385432728354(32)【说明:教师富有启发性的语言,让学生产生由此及彼的联想,同时激励学生选择一组或几组算式通过计算、观察、比较、猜想,来进一步探究减法和除法中的运算规律。不但让学生学生享受到了“跳一跳,摘果子”的快乐,同时又能让学生带着数学思考走出课堂,实现了课尽而思考犹在的生动局面。】