1、数字逻辑电路数字逻辑电路数字逻辑电路数字逻辑电路第第第第1 1章章章章 数制与编码数制与编码数制与编码数制与编码学习要点学习要点l了解数字电路的特点及分类。l了解数制与编码的概念以及各种数制之间的转换。l了解编码的概念以及8421码等几种常用的编码。第第第第1 1章章章章 数制与编码数制与编码数制与编码数制与编码1.1 1.1 概述概述概述概述1.2 1.2 数制数制数制数制1.3 1.3 编码编码编码编码退出退出退出退出1.1 1.1 概述概述概述概述1.1.1 数字信号与数字电路数字信号与数字电路模拟信号:在时间上和数值上连续的信号。数字信号:在时间上和数值上不连续的(即离散的)信号。uu
2、模拟信号波形数字信号波形tt对模拟信号进行传输、处理的电子线路称为模拟电路。对数字信号进行传输、处理的电子线路称为数字电路。1.1.2 数字电路的的特点与分类数字电路的的特点与分类(1)工作信号是二进制的数字信号,在时间上和数值上是离散的(不连续),反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。(2)在数字电路中,研究的主要问题是电路的逻辑功能,即输入信号的状态和输出信号的状态之间的关系。(3)对组成数字电路的元器件的精度要求不高,只要在工作时能够可靠地区分0和1两种状态即可。1、数字电路的特点、数字电路的特点2、数字电路的分类、数字电路的分类(2)按所用器件制作工艺的不同:数
3、字电路可分为双极型(TTL型)和单极型(MOS型)两类。(3)按照电路的结构和工作原理的不同:数字电路可分为组合逻辑电路和时序逻辑电路两类。组合逻辑电路没有记忆功能,其输出信号只与当时的输入信号有关,而与电路以前的状态无关。时序逻辑电路具有记忆功能,其输出信号不仅和当时的输入信号有关,而且与电路以前的状态有关。(1)按集成度分类:数字电路可分为小规模(SSI,每片数十器件)、中规模(MSI,每片数百器件)、大规模(LSI,每片数千器件)和超大规模(VLSI,每片器件数目大于1万)数字集成电路。集成电路从应用的角度又可分为通用型和专用型两大类型。11.2 .2 数制数制数制数制(1)进位制:表示
4、数时,仅用一位数码往往不够用,必须用进位计数的方法组成多位数码。多位数码每一位的构成以及从低位到高位的进位规则称为进位计数制,简称进位制。1.2.1 数制数制(2)基 数:进位制的基数,就是在该进位制中可能用到的数码个数。(3)位 权(位的权数):在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数就是这一位的权数。权数是一个幂。数码为:09;基数是10。运算规律:逢十进一,即:9110。十进制数的权展开式:1、十进制、十进制103、102、101、100称为十进制的权。各数位的权是10的幂。同样的数码在不同的数位上代表的数值不同。任意一个十进制数都可以表示为各个
5、数位上的数码与其对应的权的乘积之和,称权展开式。即:(5555)105103 510251015100又如:(209.04)10 2102 0101910001014 1022、二进制、二进制数码为:0、1;基数是2。运算规律:逢二进一,即:1110。二进制数的权展开式:如:(101.01)2 122 0211200211 22(5.25)10加法规则:0+0=0,0+1=1,1+0=1,1+1=10乘法规则:0.0=0,0.1=0,1.0=0,1.1=1运算运算规则规则各数位的权是的幂各数位的权是的幂二进制数只有0和1两个数码,它的每一位都可以用电子元件来实现,且运算规则简单,相应的运算电路
6、也容易实现。数码为:07;基数是8。运算规律:逢八进一,即:7110。八进制数的权展开式:如:(207.04)10 282 0817800814 82 (135.0625)103、八进制、八进制4、十六进制、十六进制数码为:09、AF;基数是16。运算规律:逢十六进一,即:F110。十六进制数的权展开式:如:(D8.A)16 13161 816010 161(216.625)10各数位的权是各数位的权是8的幂的幂各数位的权是各数位的权是16的幂的幂结论结论一般地,N进制需要用到N个数码,基数是N;运算规律为逢N进一。如果一个N进制数M包含位整数和位小数,即 (an-1 an-2 a1 a0 a
7、1 a2 am)2则该数的权展开式为:(M)2 an-1Nn-1 an-2 Nn-2 a1N1 a0 N0a1 N-1a2 N-2 amN-m 由权展开式很容易将一个N进制数转换为十进制数。1.2.2 数制转换数制转换(1)二进制数转换为八进制数:将二进制数由小数点开始,整数部分向左,小数部分向右,每3位分成一组,不够3位补零,则每组二进制数便是一位八进制数。将N进制数按权展开,即可以转换为十进制数。1、二进制数与八进制数的相互转换、二进制数与八进制数的相互转换1 1 0 1 0 1 0.0 10 00 (152.2)8(2)八进制数转换为二进制数:将每位八进制数用3位二进制数表示。=011
8、111 100.010 110(374.26)82、二进制数与十六进制数的相互转换、二进制数与十六进制数的相互转换1 1 1 0 1 0 1 0 0.0 1 10 0 00 (1D4.6)16=1010 1111 0100.0111 0110(AF4.76)16 二进制数与十六进制数的相互转换,按照每4位二进制数对应于一位十六进制数进行转换。3、十进制数转换为二进制数、十进制数转换为二进制数采用的方法 基数连除、连乘法基数连除、连乘法原理原理:将整数部分和小数部分分别进行转换。整数部分采用基数连除法,小数部分 采用基数连乘法。转换后再合并。整数部分采用基数连除法,先得到的余数为低位,后得到的余
9、数为高位。小数部分采用基数连乘法,先得到的整数为高位,后得到的整数为低位。所以:(44.375)10(101100.011)2采用基数连除、连乘法,可将十进制数转换为任意的N进制数。1.3 编码编码 用一定位数的二进制数来表示十进制数码、字母、符号等信息称为编码。用以表示十进制数码、字母、符号等信息的一定位数的二进制数称为代码。1.3.1 二二-十进制编码十进制编码 数字系统只能识别0和1,怎样才能表示更多的数码、符号、字母呢?用编码可以解决此问题。二-十进制代码:用4位二进制数b3b2b1b0来表示十进制数中的 0 9 十个数码。简称BCD码。2421码的权值依次为2、4、2、1;余3码由8
10、421码加0011得到;格雷码是一种循环码,其特点是任何相邻的两个码字,仅有一位代码不同,其它位相同。用四位自然二进制码中的前十个码字来表示十进制数码,因各位的权值依次为8、4、2、1,故称8421 BCD码。1.3.2 可靠性编码可靠性编码1 1格雷码格雷码格雷码格雷码格格格格雷雷雷雷码码码码的的的的特特特特点点点点:从一个代码变为相邻的另一个代码时只有一位发生变化。2 2奇偶校验码奇偶校验码奇偶校验码奇偶校验码奇偶校验码分为奇校验码和偶校验码两种。校验位的编码规校验位的编码规校验位的编码规校验位的编码规则是:则是:则是:则是:对于奇校验码,若信息位中有偶数个1,则校验位为1;对于偶校验码,
11、若信息位中有奇数个1,则校验位为1。1.3.3 ASCII码码ASCII码是美国信息交换标准代码,是一种8位二进制代码,b7b1这7位二进制代码表示信息对象,b0为奇偶校验码。数字逻辑电路数字逻辑电路数字逻辑电路数字逻辑电路第第第第2 2章章章章 逻辑代数逻辑代数逻辑代数逻辑代数学习要点学习要点l掌握逻辑代数的基本运算法则、基本公式、基本定理和化简方法。l了解不同类型逻辑表达式的相互转换以及最简与或表达式。l能够熟练地运用真值表、逻辑表达式、卡诺图、波形图和逻辑图表示逻辑函数。第第第第2 2章章章章 逻辑代数逻辑代数逻辑代数逻辑代数2.1 2.1 逻辑代数的基本概念逻辑代数的基本概念逻辑代数的
12、基本概念逻辑代数的基本概念2.2 2.2 逻辑代数的公式、定理和规则逻辑代数的公式、定理和规则逻辑代数的公式、定理和规则逻辑代数的公式、定理和规则2.3 2.3 逻辑函数的化简逻辑函数的化简逻辑函数的化简逻辑函数的化简2.4 2.4 逻辑函数的表示方法及其相互转换逻辑函数的表示方法及其相互转换逻辑函数的表示方法及其相互转换逻辑函数的表示方法及其相互转换退出退出退出退出2.12.12.12.1 逻辑代数逻辑代数逻辑代数逻辑代数的基本概念的基本概念的基本概念的基本概念事物往往存在两种对立的状态,在逻辑代数中可以抽象地表示为 0 和 1,称为逻辑0状态和逻辑1状态。逻辑代数是按一定的逻辑关系进行运算
13、的代数,是分析和设计数字电路的数学工具。在逻辑代数,只有和两种逻辑值,有与、或、非与、或、非与、或、非与、或、非三种基本逻辑运算,还有与或、与或、与或、与或、与非、与或非、异或与非、与或非、异或与非、与或非、异或与非、与或非、异或几种导出逻辑运算。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为逻辑常量,并不表示数量的大小,而是表示两种对立的逻辑状态。逻辑是指事物的因果关系,或者说条件和结果的关系,这些因果关系可以用逻辑运算来表示,也就是用逻辑代数来描述。2.1.1 基本逻辑运算基本逻辑运算1 1、与运算、与运算与逻辑的定义:仅当决定事件
14、(Y)发生的所有条件(A,B,C,)均满足时,事件(Y)才能发生。表达式为:开关A,B串联控制灯泡Y两个开关必须同时接通,两个开关必须同时接通,灯才亮。逻辑表达式为:灯才亮。逻辑表达式为:A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯不亮。接通,灯不亮。A接通、接通、B断开,灯不亮。断开,灯不亮。A、B都接通,灯亮。都接通,灯亮。这种把所有可能的条件组合及其对应结果一一列出来的表格叫做真值表真值表。将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如下表格来描述与逻辑关系:功能表功能表实现与逻辑的电路称为与门。与门的逻辑符号:真真值值表表逻辑符号逻辑符号2 2、或运
15、算、或运算或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,)中,只要有一个或多个条件具备,事件(Y)就发生。表达式为:开关A,B并联控制灯泡Y两个开关只要有一个接通,两个开关只要有一个接通,灯就会亮。逻辑表达式为:灯就会亮。逻辑表达式为:+A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯亮。接通,灯亮。A接通、接通、B断开,灯亮。断开,灯亮。A、B都接通,灯亮。都接通,灯亮。实现或逻辑的电路称为或门。或门的逻辑符号:Y=A+B真值表真值表功能表功能表逻辑符号逻辑符号3 3、非运算、非运算非逻辑指的是逻辑的否定。当决定事件(Y)发生的条件(A)满足时,事件不发生;条件不满
16、足,事件反而发生。表达式为:开关A控制灯泡Y实现非逻辑的电路称为非门。非门的逻辑符号:Y=AA断开,灯亮。断开,灯亮。A接通,灯灭。接通,灯灭。真真值值表表功功能能表表逻辑符号逻辑符号(1)与非运算:逻辑表达式为:(2)或非运算:逻辑表达式为:2.1.2 复合逻辑运算复合逻辑运算(3)异或运算:逻辑表达式为:(4)与或非运算:逻辑表达式为:(1)逻辑表达式:由逻辑变量和与、或、非3种运算符连接起来所构成的式子。在逻辑表达式中,等式右边的字母A、B、C、D等称为输入逻辑变量,等式左边的字母Y称为输出逻辑变量,字母上面没有非运算符的叫做原变量,有非运算符的叫做反变量。(2)逻辑函数:如果对应于输入
17、逻辑变量A、B、C、的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称Y是A、B、C、的逻辑函数。记为注意注意注意注意:与普通代数不同的是,在逻辑代数中,不管是变量还是函数,其取值都只能是0或1,并且这里的0和1只表示两种不同的状态,没有数量的含义。2.1.3 逻辑函数及其相等概念逻辑函数及其相等概念(3)逻辑函数相等的概念:设有两个逻辑函数它们的变量都是A、B、C、,如果对应于变量A、B、C、的任何一组变量取值,Y1和Y2的值都相同,则称Y1和Y2是相等的,记为Y1=Y2。若两个逻辑函数相等,则它们的真值表一定相同;反之,若两个函数的真值表完全相同,则这两个函数一定相等。因此,要证明两个逻
18、辑函数是否相等,只要分别列出它们的真值表,看看它们的真值表是否相同即可。证明等式:2.2 2.2 2.2 2.2 逻辑代数的逻辑代数的逻辑代数的逻辑代数的公式、定理和规则公式、定理和规则公式、定理和规则公式、定理和规则2.2.1 逻辑代数的公式和定理逻辑代数的公式和定理(1)常量之间的关系(2)基本公式分别令分别令A=0及及A=1代入这些代入这些公式,即可证公式,即可证明它们的正确明它们的正确性。性。(3)基本定理利用真值表很容易证利用真值表很容易证明这些公式的正确性。明这些公式的正确性。如证明如证明AB=BA:(A+B)(A+C)=AA+AB+AC+BC分配率分配率A(B+C)=AB+ACA
19、(B+C)=AB+AC=A+AB+AC+BC等幂率等幂率AA=AAA=A=A(1+B+C)+BC分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC=A+BC0-10-1率率A+1=1A+1=1证明分配率:A+BA=(A+B)(A+C)证明:证明:(4)常用公式分配率分配率A+BC=(A+B)(A+C)A+BC=(A+B)(A+C)互补率互补率A+A=1A+A=10-10-1率率A A1=11=1互补率互补率A+A=1A+A=1分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC0-10-1率率A+1=1A+1=1例如,已知等式 ,用函数Y=AC代替等式中的A,根据代入规则,等
20、式仍然成立,即有:(1)代入规则:任何一个含有变量A的等式,如果将所有出现A的位置都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。2.2.2 逻辑代数运算的基本规则逻辑代数运算的基本规则(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,原原原原变变变变量量量量换换换换成成成成反反反反变变变变量量量量,反反反反变变变变量量量量换换换换成成成成原原原原变变变变量量量量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规则称为反演规则。例如:(3)对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所
21、有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,而变变变变量量量量保保保保持持持持不不不不变变变变,则可得到的一个新的函数表达式Y,Y称为函数Y的对偶函数。这个规则称为对偶规则。例如:对对偶偶规规则则的的意意义义在在于于:如果两个函数相等,则它们的对偶函数也相等。利用对偶规则,可以使要证明及要记忆的公式数目减少一半。例如:注意注意注意注意:在运用反演规则和对偶规则时,必须按照逻辑运算的优先顺序进行:先算括号,接着与运算,然后或运算,最后非运算,否则容易出错。2.2.3 逻辑函数的表达式逻辑函数的表达式一个逻辑函数的表达式可以有与或表达式、或与表达式、与非-与非表达式、或非-或
22、非表达式、与或非表达式5种表示形式。一种形式的函数表达式相应于一种逻辑电路。尽管一个逻辑函数表达式的各种表示形式不同,但逻辑功能是相同的。1 1、逻辑函数的最小项及其性质逻辑函数的最小项及其性质(1)最小项:如果一个函数的某个乘积项包含了函数的全部变量,其中每个变量都以原变量或反变量的形式出现,且仅出现一次,则这个乘积项称为该函数的一个标准积项,通常称为最小项。3个变量A、B、C可组成8个最小项:(2)最小项的表示方法:通常用符号mi来表示最小项。下标i的确定:把最小项中的原变量记为1,反变量记为0,当变量顺序确定后,可以按顺序排列成一个二进制数,则与这个二进制数相对应的十进制数,就是这个最小
23、项的下标i。3个变量A、B、C的8个最小项可以分别表示为:(3)最小项的性质:任意一个最小项,只有一组变量取值使其值为1。全部最小项的和必为1。ABCABC任意两个不同的最小项的乘积必为0。2 2、逻辑函数的最小项表达式逻辑函数的最小项表达式任何一个逻辑函数都可以表示成唯一的一组最小项之和,称为标准与或表达式,也称为最小项表达式对于不是最小项表达式的与或表达式,可利用公式AA1 和A(B+C)ABBC来配项展开成最小项表达式。如果列出了函数的真值表,则只要将函数值为1的那些最小项相加,便是函数的最小项表达式。m1ABCm5ABCm3ABCm1ABC将真值表中函数值为0的那些最小项相加,便可得到
24、反函数的最小项表达式。2.3 2.3 2.3 2.3 逻辑函逻辑函逻辑函逻辑函数的化简数的化简数的化简数的化简逻辑函数化简的意义:逻辑表达式越简单,实现它的电路越简单,电路工作越稳定可靠。2.3.1 逻辑函数的最简表达式逻辑函数的最简表达式1 1、最简与或表达式最简与或表达式乘积项最少、并且每个乘积项中的变量也最少的与或表达式。最简与或表达式最简与或表达式2 2、最简与非与非表达式最简与非与非表达式非号最少、并且每个非号下面乘积项中的变量也最少的与非-与非表达式。在最简与或表达式的基础上两次取反用摩根定律去掉下面的非号3 3、最简或与表达式最简或与表达式括号最少、并且每个括号内相加的变量也最少
25、的或与表达式。求出反函数的最简与或表达式利用反演规则写出函数的最简或与表达式4 4、最简或非或非表达式最简或非或非表达式非号最少、并且每个非号下面相加的变量也最少的或非-或非表达式。求最简或与表达式两次取反、最简与或非表达式最简与或非表达式非号下面相加的乘积项最少、并且每个乘积项中相乘的变量也最少的与或非表达式。求最简或非-或非表达式用摩根定律去掉下面的非号用摩根定律去掉大非号下面的非号2.3.2 逻辑函数的公式化简法逻辑函数的公式化简法1 1、并项法、并项法逻辑函数的公式化简法就是运用逻辑代数的基本公式、定理和规则来化简逻辑函数。利用公式1,将两项合并为一项,并消去一个变量。若若两两个个乘乘
26、积积项项中中分分别别包包含含同同一一个个因因子子的的原原变变量量和和反反变变量量,而而其其他他因因子子都都相相同同时时,则则这这两两项项可可以以合合并并成成一一项项,并并消消去去互互为为反反变变量量的的因因子子。运用摩根定律运用分配律运用分配律2 2、吸收法、吸收法如如果果乘乘积积项项是是另另外外一一个个乘乘积积项项的的因因子子,则则这这另另外外一一个个乘乘积积项项是是多多余余的的。运用摩根定律()利用公式,消去多余的项。()利用公式,消去多余的变量。如如果果一一个个乘乘积积项项的的反反是是另另一一个个乘乘积积项项的的因因子子,则则这这个个因因子子是是多多余余的的。、配项法、配项法()利用公式
27、(),为某一项配上其所缺的变量,以便用其它方法进行化简。()利用公式,为某项配上其所能合并的项。、消去冗余项法、消去冗余项法利用冗余律,将冗余项消去。例:化简函数解:先求出Y的对偶函数Y,并对其进行化简。求Y的对偶函数,便得的最简或与表达式。2.3.3 逻辑函数的图形化简法逻辑函数的图形化简法1 1、卡诺图的构成、卡诺图的构成逻辑函数的图形化简法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。将逻辑函数真值表中的最小项重新排列成矩阵形式,并且使矩阵的横方向和纵方向的逻辑变量的取值按照格雷码的顺序排列矩阵的横方向和纵方向的逻辑变量的取值按照格雷码的顺序排列,这样构成的图形就是卡诺图。卡诺图
28、的特点是任意两个相邻的最小项在图中也是相邻的。(相邻项是指两个最小项只有一个因子互为反变量,其余因子均相同,又称为逻辑相邻项)。每每个个2 2变变量量的的最最小小项项有有两两个个最最小小项项与与它它相相邻邻每每个个3 3变变量量的的最最小小项项有有3 3个个最最小小项项与与它它相相邻邻每个每个4 4变量的最小项有变量的最小项有4 4个最小项与它相邻个最小项与它相邻最最左左列列的的最最小小项项与与最最右右列列的的相相应应最最小小项项也也是是相相邻邻的的最最上上面面一一行行的的最最小小项项与与最最下下面面一一行行的的相相应应最最小小项项也也是是相相邻邻的的两个相邻最小项可以合并消去一个变量逻辑函数
29、化简的实质就是相邻最小项的合并2 2、逻辑函数在卡诺图中的表示、逻辑函数在卡诺图中的表示(1)逻辑函数是以真值表或者以最小项表达式给出:在卡诺图上那些与给定逻辑函数的最小项相对应的方格内填入1,其余的方格内填入0。m1m3m4m7m6m11m15m14(2)逻辑函数以一般的逻辑表达式给出:先将函数变换为与或表达式(不必变换为最小项之和的形式),然后在卡诺图上与每一个乘积项所包含的那些最小项(该乘积项就是这些最小项的公因子)相对应的方格内填入1,其余的方格内填入0。变变换换为为与与或或表表达达式式的公因子的公因子说明说明:如果求得了函数的反函数,则对中所包含的各个最小项,在卡诺图相应方格内填入0
30、,其余方格内填入1。3 3、卡诺图的性质、卡诺图的性质(1)任何两个(21个)标1的相邻最小项,可以合并为一项,并消去一个变量(消去互为反变量的因子,保留公因子)。(2)任何4个(22个)标1的相邻最小项,可以合并为一项,并消去2个变量。(3)任何8个(23个)标1的相邻最小项,可以合并为一项,并消去3个变量。小小结结:相相邻邻最最小小项项的的数数目目必必须须为为个个才才能能合合并并为为一一项项,并并消消去去一一个个变变量量。包包含含的的最最小小项项数数目目越越多多,即即由由这这些些最最小小项项所所形形成成的的圈圈越越大大,消消去去的的变变量量也也就就越越多多,从从而而所所得得到到的的逻逻辑辑
31、表表达达式式就就越越简简单单。这这就就是是利利用用卡卡诺诺图图化化简简逻逻辑辑函函数数的的基基本本原原理理。4 4、图形法化简的基本步骤、图形法化简的基本步骤逻辑表达式逻辑表达式或真值表或真值表卡诺图卡诺图 1 1 合并最小项合并最小项圈越大越好,但每个圈中标的方格数目必须为个。同一个方格可同时画在几个圈内,但每个圈都要有新的方格,否则它就是多余的。不能漏掉任何一个标的方格。最简与或表达式最简与或表达式冗余项 2 2 3 3 将代表每个圈的乘积项相加两点说明:在有些情况下,最小项的圈法不只一种,得到的各个乘积项组成的与或表达式各不相同,哪个是最简的,要经过比较、检查才能确定。不是最简最简 在有
32、些情况下,不同圈法得到的与或表达式都是最简形式。即一个函数的最简与或表达式不是唯一的。2.3.4 含随意项的逻辑函数的化简含随意项的逻辑函数的化简随意项随意项:函数可以随意取值(可以为0,也可以为1)或不会出现的变量取值所对应的最小项称为随意项,也叫做约束项或无关项。1 1、含随意项的逻辑函数含随意项的逻辑函数例如:判断一位十进制数是否为偶数。不会出现不会出现不会出现不会出现不会出现不会出现 说 明 1 1 1 10 0 1 1 1 1 1 1 01 0 1 1 0 1 1 0 10 0 1 0 1 1 1 0 01 0 1 0 0 1 0 1 10 0 0 1 1 1 0 1 01 0 0
33、1 00 1 0 0 10 0 0 0 11 1 0 0 01 0 0 0 0Y A B C DY A B C D输入变量A,B,C,D取值为00001001时,逻辑函数Y有确定的值,根据题意,偶数时为1,奇数时为0。A,B,C,D取值为1010 1111的情况不会出现或不允许出现,对应的最小项属于随意项。用符号“”、“”或“d”表示。随意项之和构成的逻辑表达式叫做 随意条件或约束条件,用一个值恒为 0 的条件等式表示。含有随意条件的逻辑函数可以表示成如下形式:2 2、含随意项的逻辑函数的化简含随意项的逻辑函数的化简在逻辑函数的化简中,充分利用随意项可以得到更加简单的逻辑表达式,因而其相应的逻
34、辑电路也更简单。在化简过程中,随意项的取值可视具体情况取0或取1。具体地讲,如果随意项对化简有利,则取1;如果随意项对化简不利,则取0。不利用随意项的化简结果为:利用随意项的化简结果为:3 3、变量互相排斥的逻辑函数的化简变量互相排斥的逻辑函数的化简在一组变量中,如果只要有一个变量取值为1,则其它变量的值就一定为0,具有这种制约关系的变量叫做互相排斥的变量。变量互相排斥的逻辑函数也是一种含有随意项的逻辑函数。简化真值表2.4 2.4 2.4 2.4 逻辑函数的表逻辑函数的表逻辑函数的表逻辑函数的表示方法及其相互转换示方法及其相互转换示方法及其相互转换示方法及其相互转换2.4.1 逻辑函数的表示
35、方法逻辑函数的表示方法1 1、真值表真值表真值表:是由变量的所有可能取值组合及其对应的函数值所构成的表格。真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2i种不同的取值,将这2i种不同的取值按顺序(一般按二进制递增规律)排列起来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。例如:当A=B=1、或则B=C=1时,函数Y=1;否则Y=0。2 2、逻辑表达式逻辑表达式逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。函数的标准与或表达式的列写方法:将函数的真值表中那些使函数值为1的最小项相加,便得到函数的标准与或表达式。3 3、卡诺图卡诺图卡诺图:是由表示变
36、量的所有可能取值组合的小方格所构成的图形。逻辑函数卡诺图的填写方法:在那些使函数值为1的变量取值组合所对应的小方格内填入1,其余的方格内填入0,便得到该函数的卡诺图。4 4、逻辑图逻辑图逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。、波形、波形图图波形图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。2.4.2 逻辑函数表示方法之间的转换逻辑函数表示方法之间的转换1 1、由真值表到、由真值表到逻辑图的转换逻辑图的转换真值表真值表逻辑表逻辑表达式或达式或卡诺图卡诺图 1 1 最简与或最简与或表达式表达式化简 2 或 2&画逻辑图画逻辑图 3&1ABCA
37、最简与或最简与或表达式表达式&CBBAACABACYACBBAACY&ABCABAC若用与非门实若用与非门实现,将最简与现,将最简与或表达式变换或表达式变换乘最简与非乘最简与非-与非表达式与非表达式 3 2 2、由、由逻辑图逻辑图到真值表到真值表的转换的转换逻辑图逻辑图逻辑表逻辑表达式达式 1 1 最简与或最简与或表达式表达式化简 2&A1CBBAACY11 2 从输入到输出逐级写出最简与或最简与或表达式表达式 3 真值表真值表 3 数字逻辑电路数字逻辑电路数字逻辑电路数字逻辑电路第第第第3 3章章章章 门电路门电路门电路门电路学习要点学习要点l掌掌握握各各种种TTL门门电电路路和和CMOS门
38、门电电路路的的逻辑功能逻辑功能。l理理解解TTL门门电电路路的的主主要要参参数数及及TTL电电路路与与CMOS电路的主要差异电路的主要差异。l了了解解二二极极管管、双双极极型型晶晶体体管管和和MOS管管的开关特性的开关特性,l了了解解门门电电路路的的使使用用常常识识,集集电电极极开开路路门门、三态门三态门、传输门等电路及功能传输门等电路及功能。第第第第3 3章章章章 门电路门电路门电路门电路3.1 3.1 半导体元件的开关特性半导体元件的开关特性半导体元件的开关特性半导体元件的开关特性3.2 3.2 分立元件门电路分立元件门电路分立元件门电路分立元件门电路3.3 TTL3.3 TTL集成门电路
39、集成门电路集成门电路集成门电路3.4 CMOS3.4 CMOS集成门电路集成门电路集成门电路集成门电路3.5 3.5 集成门电路的使用集成门电路的使用集成门电路的使用集成门电路的使用退出退出退出退出3.1 3.1 半导体元半导体元半导体元半导体元件的开关特性件的开关特性件的开关特性件的开关特性获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态。逻辑0和1:电子电路中用高、低电平来表示。3.1.1 二极管的开关特性二极管的开关特性逻辑门电路:用以实现基本和常用逻辑运算的电子电路。简称门电路。基本和常用门电路有与门、或门、非门(反相器)、与非门、或非门、与或非门和异或
40、门等。二极管符号:正极负极uD uououi0V时,二极管截止,如同开关断开,uo0V。ui5V时,二极管导通,如同0.7V的电压源,uo4.3V。二极管的反向恢复时间限制了二极管的开关速度。Ui0.5V时,二极管导通。3.1.2 晶体管的开关特性晶体管的开关特性RbRc+VCCbce截止状态饱和状态iBIBSui=UIL0.5Vuo=+VCCui=UIHuo=0.3VRbRc+VCCbce0.7V0.3V饱和区截止区放大区ui=0.3V时,因为uBE0.5V,iB=0,三极管工作在截止状态,ic=0。因为ic=0,所以输出电压:ui=1V时,三极管导通,基极电流:因为0iBIBS,三极管工作
41、在饱和状态。输出电压:uoUCES0.3V工作原理电路转移特性曲线输出特性曲线uiuiGDSRD+VDDGDSRD+VDDGDSRD+VDD截止状态uiUTuo03.1.3 场效应管的开关特性场效应管的开关特性3.2 3.2 分立元件分立元件分立元件分立元件门电路门电路门电路门电路3.2.1 二极管与门二极管与门Y=ABY=A+B3.2.2 二极管或门二极管或门uA0V时,三极管截止,iB0,iC0,输出电压uYVCC5VuA5V时,三极管导通。基极电流为:iBIBS,三极管工作在饱和状态。输出电压uYUCES0.3V。三极管临界饱和时的基极电流为:3.2.3 晶体管非门晶体管非门当uA0V时
42、,由于uGSuA0V,小于开启电压UT,所以MOS管截止。输出电压为uYVDD10V。当uA10V时,由于uGSuA10V,大于开启电压UT,所以MOS管导通,且工作在可变电阻区,导通电阻很小,只有几百欧姆。输出电压为uY0V。3.2.4 复合门电路复合门电路1 1、DTLDTL与非门与非门与非门与非门由与门和非门连接而成2 2、DTLDTL或非门或非门或非门或非门由或门和非门连接而成3.3 TTL3.3 TTL集成集成集成集成门电路门电路门电路门电路3.3.1 TTL与非门与非门输入信号不全为1:如uA=0.3V,uB=3.6V3.6V0.3V1V则uB1=0.3+0.7=1V,T2、T5截
43、止,T3、T4导通忽略iB3,输出端的电位为:输出Y为高电平。uY50.70.73.6V3.6V3.6V输入信号全为1:如uA=uB=3.6V2.1V则uB1=2.1V,T2、T5导通,T3、T4截止输出端的电位为:uY=UCES0.3V输出Y为低电平。功能表功能表真值表真值表逻辑表达式逻辑表达式输入有低,输出为高;输入有低,输出为高;输入全高,输出为低。输入全高,输出为低。74LS00内含4个2输入与非门,74LS20内含2个4输入与非门。A=0时,T2、T5截止,T3、T4导通,Y=1。A=1时,T2、T5导通,T3、T4截止,Y=0。TTL非门3.3.2 其他功能的其他功能的TTL门电路
44、门电路A、B中只要有一个为1,即高电平,如A1,则iB1就会经过T1集电结流入T2基极,使T2、T5饱和导通,输出为低电平,即Y0。AB0时,iB1、iB1均分别流入T1、T1发射极,使T2、T2、T5均截止,T3、T4导通,输出为高电平,即Y1。TTL或非门A和B都为高电平(T2导通)、或C和D都为高电平(T2导通)时,T5饱和导通、T4截止,输出Y=0。A和B不全为高电平、并且C和D也不全为高电平(T2和T2同时截止)时,T5截止、T4饱和导通,输出Y=1。TTL与或非门与门Y=AB=AB或门Y=A+B=A+B异或门问题的提出:为解决一般TTL与非门不能线与而设计的。A、B不全为1时,uB
45、1=1V,T2、T3截止,Y=1。接入外接电阻R后:A、B全为1时,uB1=2.1V,T2、T3饱和导通,Y=0。外接电阻R的取值范围为:OC门3.3.3 TTL集电极开路门和三态门集电极开路门和三态门TSL门E0时,二极管D导通,T1基极和T2基极均被钳制在低电平,因而T2T5均截止,输出端开路,电路处于高阻状态。结论:电路的输出有高阻态、高电平和低电平3种状态。E1时,二极管D截止,TSL门的输出状态完全取决于输入信号A的状态,电路输出与输入的逻辑关系和一般反相器相同,即:Y=A,A0时Y1,为高电平;A1时Y0,为低电平。TSL门的应用:作多路开关:E=0时,门G1使能,G2禁止,Y=A
46、;E=1时,门G2使能,G1禁止,Y=B。信号双向传输:E=0时信号向右传送,B=A;E=1时信号向左传送,A=B。构成数据总线:让各门的控制端轮流处于低电平,即任何时刻只让一个TSL门处于工作状态,而其余TSL门均处于高阻状态,这样总线就会轮流接受各TSL门的输出。TTL系列集成电路74:标准系列,前面介绍的TTL门电路都属于74系列,其典型电路与非门的平均传输时间tpd10ns,平均功耗P10mW。74H:高速系列,是在74系列基础上改进得到的,其典型电路与非门的平均传输时间tpd6ns,平均功耗P22mW。74S:肖特基系列,是在74H系列基础上改进得到的,其典型电路与非门的平均传输时间
47、tpd3ns,平均功耗P19mW。74LS:低功耗肖特基系列,是在74S系列基础上改进得到的,其典型电路与非门的平均传输时间tpd9ns,平均功耗P2mW。74LS系列产品具有最佳的综合性能,是TTL集成电路的主流,是应用最广的系列。3.3.4 TTL集成电路的主要参数集成电路的主要参数TTL与非门主要参数(1)输出高电平UOH:TTL与非门的一个或几个输入为低电平时的输出电平。产品规范值UOH2.4V,标准高电平USH2.4V。(2)高电平输出电流IOH:输出为高电平时,提供给外接负载的最大输出电流,超过此值会使输出高电平下降。IOH表示电路的拉电流负载能力。(3)输出低电平UOL:TTL与
48、非门的输入全为高电平时的输出电平。产品规范值UOL0.4V,标准低电平USL0.4V。(4)低电平输出电流IOL:输出为低电平时,外接负载的最大输出电流,超过此值会使输出低电平上升。IOL表示电路的灌电流负载能力。(5)扇出系数NO:指一个门电路能带同类门的最大数目,它表示门电路的带负载能力。一般TTL门电路NO8,功率驱动门的NO可达25。(6)最大工作频率fmax:超过此频率电路就不能正常工作。(7)输入开门电平UON:是在额定负载下使与非门的输出电平达到标准低电平USL的输入电平。它表示使与非门开通的最小输入电平。一般TTL门电路的UON1.8V。(8)输入关门电平UOFF:使与非门的输
49、出电平达到标准高电平USH的输入电平。它表示使与非门关断所需的最大输入电平。一般TTL门电路的UOFF0.8V。(9)高电平输入电流IIH:输入为高电平时的输入电流,也即当前级输出为高电平时,本级输入电路造成的前级拉电流。(10)低电平输入电流IIL:输入为低电平时的输出电流,也即当前级输出为低电平时,本级输入电路造成的前级灌电流。(11)平均传输时间tpd:信号通过与非门时所需的平均延迟时间。在工作频率较高的数字电路中,信号经过多级传输后造成的时间延迟,会影响电路的逻辑功能。(12)空载功耗:与非门空载时电源总电流ICC与电源电压VCC的乘积。3.4 CMOS3.4 CMOS集集集集成门电路
50、成门电路成门电路成门电路3.4.1 CMOS非门非门(1)uA0V时,TN截止,TP导通。输出电压uYVDD10V。(2)uA10V时,TN导通,TP截止。输出电压uY0V。A、B当中有一个或全为低电平时,TN1、TN2中有一个或全部截止,TP1、TP2中有一个或全部导通,输出Y为高电平。只有当输入A、B全为高电平时,TN1和TN2才会都导通,TP1和TP2才会都截止,输出Y才会为低电平。3.4.2 其他功能的其他功能的CMOS门电路门电路CMOS与非门CMOS或非门只要输入A、B当中有一个或全为高电平,TP1、TP2中有一个或全部截止,TN1、TN2中有一个或全部导通,输出Y为低电平。只有当