1、Neural InjuryAnd Functional Reconstruction,August 2023,Vol.18,No.8综述1 AD概述阿尔茨海默病(Alzheimer disease,AD)是一种中枢神经系统退行性疾病,以进行性认知功能下降及行为改变为主要表现1。根据2020年发布的一项全国性的横断面研究结果显示,中国60岁及以上的痴呆患者约有1507万,其中AD患者约为983万,是目前老年痴呆的主要类型2。2022年中国阿尔茨海默病报告 统计结果显示,随着中国人口老龄化程度的加深,AD的发病率和死亡率逐步上升,目前AD已成为中国城乡居民的第5大死因3。但AD在我国的诊断和治疗率
2、仍然较低,积极寻找影响AD发生发展的相关因素,并对其尽早进行防治尤为重要。2 T淋巴细胞与ADAD 所公认的病理学特征是淀粉样蛋白(amyloid,A)的细胞外沉积、Tau蛋白的细胞内聚集引起神经原纤维缠结(neurofibrillary tangles,NFTs)和神经变性。然而,AD发病的具体发病机制目前仍不明确,其中神经炎症持续存在被认为是驱使疾病发展的关键因素。当中枢神经系统(centralnervous system,CNS)内固有的小胶质细胞和星形胶质细胞被疾病蛋白激活,可通过产生炎症和神经毒性因子导致神经损伤4。近年来已有研究证明AD 患 者 CNS 神 经 炎 症 与 T 淋
3、巴 细 胞(Tlymphocyte)(下简称T细胞)浸润增加相关,并在小鼠模型和患者的尸检样本中发现其浸润部位靠近A沉积物,证实T细胞及其亚群可通过AD患者的受损的血脑屏障(Blood-Brain Barrier,BBB)渗透CNS从而介导神经炎症,影响AD的病理学改变及认知损伤5,6。然而,T细胞分类复杂且各亚群参与AD发展的机制及变化程度不同7,因其功能主要取决CD4+、CD8+和调节性T细胞,故对此3类进行逐一论述。2.1 CD4+T细胞AD患者存在外周免疫功能障碍,CD4+亦可通过BBB从外周渗透CNS与脑内神经胶质细胞相互作用而影响神经元活性8。近年 Machhi 等9在APP-PS
4、1小鼠实验研究中发现CD4+可加速AD的病程进展,主要印证了其亚型A-Th1和A-Th17的自身反应性效应T细胞(Teffs)均可通过下调周围神经系统和CNS内Treg细胞的作用,促进AD的病理学改变发生,同时伴随小胶质细胞激活升高和神经炎症加剧,迫使记忆障碍加剧。此外,CD4+T细胞的主要亚型Th1、Th17和Th2参与AD机制亦有区别。2.1.1Th1Th1分泌的细胞因子干扰素-(interfe-ron-,IFN-)可活化巨噬细胞以增强细胞介导的抗T淋巴细胞与阿尔茨海默病相关性的研究进展刘艳梅1,孟新玲2作者单位1.新疆医科大学第四临床医学院乌鲁木齐 8300002.新疆医科大学附属中医医
5、院神经内科乌鲁木齐 830000基金项目新疆维吾尔自治区自然科学基金项目(No.2022D01C161)收稿日期2023-04-04通讯作者孟新玲摘要 阿尔茨海默病(AD)是一种中枢神经系统退行性疾病。神经炎症是影响AD进展的关键因素,研究显示AD患者脑实质内存在外周T淋巴细胞及其亚群的浸润,提示外周免疫细胞可通过血脑屏障并介导和参与中枢神经炎症的调节,影响AD病程进展。本文将阐述T淋巴细胞及其亚群与AD疾病发展之间的相关性和研究进展,并概述AD的主要治疗药物与炎症相关性。关键词阿尔茨海默病;T淋巴细胞;亚群;研究进展中图分类号 R741;R741.02;R742 文献标识码ADOI10.16
6、780/ki.sjssgncj.20230070本文引用格式:刘艳梅,孟新玲.T淋巴细胞与阿尔茨海默病相关性的研究进展J.神经损伤与功能重建,2023,18(8):484-487.Research Progress on the Correlation between T Lymphocytes and Alzheimer s DiseaseLIUYanmei1,MENG XinLing2.1.The Fourth Clinical Medical College of Xinjiang Medical University,XinjiangUrumchi 830000,China;2.Dep
7、artment of neurology,Affiliated Hospital of Traditional Chinese Medicine ofXinjiang Medical University,Xinjiang Urumchi 830000,ChinaAbstract Alzheimer s disease(AD)is a neurodegenerative disease.Neuroinflammation is a key factor affect-ing the progression of AD.In recent years,a number of studies ha
8、ve identified the infiltration of peripheral Tlymphocytes and their subsets in the brain parenchyma of AD patients,which confirmed that peripheral immunecells can cross the blood-brain barrier and participate in the regulation of central neuroinflammation,affectingthe progression of AD.In this revie
9、w,we will describe the research progress on the correlation between T lym-phocytes,their subsets and the development of AD,and summarize the correlation between inflammation andthe main therapeutic drugs forAD.KeywordsAlzheimer s disease;T lymphocytes;subset;research progress484神经损伤与功能重建2023年8月第18卷第
10、8期感染免疫,早期Browne等10的实验研究证实,IFN-在大脑中的有限表达有利于T细胞浸润到CNS,并与小胶质细胞形成免疫突触,而渗入大脑的T细胞亦可产生IFN-促进小胶质细胞激活增加、A沉积和认知功能受损。同时,在5XFAD小鼠的脑室内注射 A-Th1 细胞后,也促进了 IFN-和趋化因子 CXCL9、CXCL10和CXCL11的表达11;与实验结果相一致的是,在AD患者及轻度认知障碍(mild cognitive impairment,MCI)受试者的脑脊液中检测到IFN-诱导的CXCL10浓度明显增加,并与简易精神状态量表评分呈正相关12。除此以外,IFN-等炎性因子还可抑制人脑血管
11、平滑肌的强直收缩力加重AD患者的微出血,炎性细胞因子产生的自身调节紊乱可导致脑灌注受损,并导致AD患者微出血和A清除失调,使患者的认知受损更为严重13,这也提示了在AD疾病进展中的微出血。2.1.2Th17Th17是研究最多的CD4 Th亚群之一,目前已有研究表示AD患者大脑中活化的Th17细胞及其炎性细胞因子(如IL-17A、IL-21和IL-23)可能协同促进其神经病理学改变14。与此观点相证,在AD的三重转基因小鼠模型大脑中发现了较高水平的IL-17A、TNF-、IL-2和GM-CSF15;另一项研究中,在注射了A42肽的小鼠海马体、外周血和脑脊液中也发现IL-17A和 IL-22 显著
12、增加16,可见 IL-17A 在 AD 进展中变化明显。Zenaro等17的研究结果也表明A聚集物可介导嗜中性粒细胞的募集和趋化产生IL-17A,而IL-17A对神经元和BBB有直接毒性,并可能扩增 CNS 中的嗜中性粒细胞,从而导致病理恶化。现有现有数据充分提示 Th17 极化与 AD 的神经变性有关。因此,研究者提出,最佳的AD疫苗应抑制Th17对A的免疫应答18,以预防神经炎症和后续的神经退行性变。2.1.3Th2与Th1和Th17作用相反的是,Th2可分别抑制Th1和Th17对细胞因子IFN-和IL-17产生的胶质诱导,可调节减弱A特异性Th1和Th17诱导的神经炎症激活,减低小胶质细
13、胞反应性及A病理学19。与此同时,Walsh等20通过实验室研究表明Th2的细胞因子IL-4对受损的CNS神经具有保护和恢复作用;且在临床AD型MCI患者的外周血中发现较高浓度的IL-4,而随着疾病严重程度逐渐增加IL-4水平出现降低21。Th2的作用机制研究为AD治疗提供了研究靶点,目前许多针对AD的预防性疫苗正在研发,为了延缓AD的发作,疫苗中含有的佐剂需能诱导有效抗炎作用的Th2免疫反应,这种免疫反应可能介导产生针对神经毒性A和抗炎细胞因子的中和抗体22,从而预防AD相关炎症。2.2 CD8+T细胞在AD等认知相关疾病中,CD8+T细胞已被发现是浸润大脑结构的主要T细胞类型23,Unge
14、r等24在小鼠模型脑实质中发现CD8+T细胞与小胶质细胞以及神经元结构密切相关,实验证明CD8+T细胞以年龄和病理依赖性的方式浸润脑实质,认为CD8+T细胞在功能上参与调节突触可塑性,可能塑造神经元。同时一项 Tau 转基因小鼠研究结果显示 CD8+T 细胞可穿过BBB,间接、直接地影响小胶质细胞的功能特性,促进神经炎症和认知能力下降25,因而促进AD进展。在外周环境中,一项包括36项研究涉及2339例AD患者的荟萃分析显示,与健康对照组相比,AD患者外周的CD4/CD8比率增加以及CD8+T细胞百分比降低26。为进一步证实CD8+在疾病发病机制中的活性作用,在被诊断为 AD 和 AD 型 M
15、CI 患者的外周血中,发现 CD8+效应记忆CD45RA+细胞(TEMRA)的数量增加,这种T细胞群具有分泌促炎细胞因子和细胞毒性分子的强大效能,并与神经认知障碍的发展程度呈负相关,或许CD8+TEMRA细胞数量增多可作为AD的一个免疫特征27。另有AD患者和动物模型的海马和皮质下白质中检测到具有组织驻留记忆T(Trm)细胞特征的CD8+T细胞28,29,且有最新研究发现,APP-PS1小鼠海马中的CD8+表达与 Trm T 细胞组织停留相关的蛋白,即 CXCR6、LITAF 和ISG20,且与慢性感染模型小鼠的脑Trm CD8+T细胞具有高相似性28。然而,它们的具体作用还有待进一步探究。2
16、.3 调节性T细胞(Treg)Treg是CD4+的一个抗炎亚群,可抑制其他Th亚群的促炎免疫反应,维持免疫稳态。在啮齿动物和人类中,它们的细胞表型由IL-2受体(CD25)及转录因子Foxp3的高表达和IL-7受体(CD127)的低表达所定义,稳定表达Foxp3的Treg细胞是维持外周免疫耐受的关键30。近年多项探讨AD外周生物标志物的临床研究结果显示,AD痴呆患者的外周血中Treg细胞的比例明显降低且抑制功能受损,对于Treg在疾病过程中的明显活性抑制也成为一个新的治疗靶点,Treg扩增目前正在被转化为神经退行性疾病的细胞疗法31,32。早期研究发现Treg的早期损耗可加速小鼠认知障碍的发生
17、,通过外周低剂量IL-2治疗扩增Treg有助于认知能力改善33,认为Treg可通过调节小胶质细胞对A沉积的反应减慢疾病进展。此外,Baek等34将Treg细胞移植到3xTg-AD小鼠体内,结果不仅改善了小鼠的空间学习和记忆,还利于减少大脑中A斑块的沉积和炎症细胞因子的产生,均提示Treg细胞诱导的免疫抑制对 AD 病理发展的重要。然而,Baruch 等35通过靶向Foxp3+Tregs 破坏 5XFAD 小鼠的免疫耐受发现,Treg 可增强IFN-依赖的大脑的脉络丛通道活性,导致免疫细胞在病理部位积累,认为Treg并没有在AD病理学中起积极作用。近年,有研究通过早期接种灭活流感疫苗使小鼠的认知
18、缺陷改善和A负担减轻,但灭活流感疫苗诱导的免疫反应激活小胶质细胞也降低了外周Treg活性,通过全反式维甲酸恢复外周Treg水平反而削弱了灭活流感疫苗对A负荷和认知功能的保护作用36。由此Treg在AD中的功能作用仍存在矛盾和争议,其因果关系仍在继续研究中。3 AD治疗药物目前临床应用最为广泛的是作用于胆碱能系统的药物,如多奈哌齐、卡巴拉汀和加兰他敏,通过抑制乙酰胆碱酯酶(acetylcholinesterase,AChE)的作用,从而维持AD患者脑中乙酰胆碱含量37,另外 N-甲基-D-天冬氨酸(N-methyl-D-aspartic485Neural InjuryAnd Functional
19、 Reconstruction,August 2023,Vol.18,No.8acid,NMDA)拮抗剂中美金刚是该类别中唯一批准用于治疗中度至重度AD的药物38。近年多项研究显示不同治疗药物对于AD患者外周免疫也有影响。结果显示,多奈哌齐可抑制Th1数量,但不抑制Th2;给予卡巴拉汀可减少AD患者血液中的T细胞增殖,抑制Th1和Th17但不抑制Th2;美金刚可以选择性地抑制Th1,但无法抑制Th2或Treg39。通过调节脑-肠轴改善认知功能的新型药物甘露特纳(GV-971)被发现可有效修复肠道微生物群的同时,也减少了大脑中Th1相关的神经炎症40,在临床亦取得良好的疗效。目前AD药物研发中淀
20、粉样蛋白靶向疗法仍然是主要开发途径,炎症也成为了临床前和临床开发第2大类别41,今后将有更多药物进入临床以改善AD疾病的进程及预后。4 总结综上所述,大量研究已证明AD患者存在外周免疫功能紊乱,外周T淋巴细胞及其亚群直接或间接影响AD病程中神经炎症的发展,与病理学改变及认知损伤程度息息相关。但AD的发病机制复杂涉及因素众多,具体机制目前仍在研究探索中。同时,靶向神经炎症遗传通路的药物正在开发,通过改善免疫功能来减缓疾病进展也是AD治疗研究方向。参考文献1KhanS,BarveKH,KumarMS.RecentAdvancementsinPathogenesis,Diagnostics and
21、Treatment of Alzheimers DiseaseJ.CurrNeuropharmacol,2020,18(11):1106-1125.2 Jia L,Du Y,Chu L,et al.Prevalence,risk factors,and management ofdementia and mild cognitive impairment in adults aged 60 years or older inChina:a cross-sectional studyJ.Lancet Public Health,2020,5(12):e661-e671.3 Ren R,Qi J,
22、Lin S,et al.The China Alzheimer Report 2022J.GenPsychiatr,2022,35(1):e100751.4 Hampel H,Caraci F,Cuello AC,et al.A Path Toward PrecisionMedicine for Neuroinflammatory Mechanisms in Alzheimers DiseaseJ.Front Immunol,2020,11:456.5GonzlezH,PachecoR.T-cell-mediatedregulationofneuroinflammationinvolvedin
23、neurodegenerativediseasesJ.JNeuroinflammation,2014,11(1):201.6 Yamazaki Y,Kanekiyo T.Blood-Brain Barrier Dysfunction and thePathogenesis ofAlzheimers DiseaseJ.Int J Mol Sci,2017,18(9):1965.7 Dai L,Shen Y.Insights into Tcell dysfunction in Alzheimers diseaseJ.Aging Cell,2021,20(12):e13511.8 Anderson
24、KM,Olson KE,Estes KA,et al.Dual destructive andprotective roles of adaptive immunity in neurodegenerative disordersJ.Transl Neurodegener,2014,3(1):25.9 Machhi J,Yeapuri P,Lu Y,et al.CD4+effector T cells accelerateAlzheimers disease in miceJ.J Neuroinflammation,2021,18(1):272.10 Browne TC,McQuillan K
25、,McManus RM,et al.IFN-Production byAmyloid-Specific Th1 Cells Promotes Microglial Activation andIncreases Plaque Burden in a Mouse Model of Alzheimers DiseaseJ.JImmunol,2013,190(5):2241-2251.11 Mittal K,Eremenko E,Berner O,et al.CD4 T Cells Induce A Subsetof MHCII-Expressing Microglia that Attenuate
26、s Alzheimer PathologyJ.iScience,2019,16:298311.12 Koper O,Kamiska J,Sawicki K,et al.CXCL9,CXCL10,CXCL11,and their receptor(CXCR3)in neuroinflammation and neurodegenerationJ.Adv Clin Exp Med,2018,27(6):849-856.13 Yun J W,Washington C,McCormick J,et al.Amyloid Beta Peptidesand Th1 Cytokines Modulate H
27、uman Brain Vascular Smooth Muscle TonicContractile Capacity In Vitro:Relevance to Alzheimers DiseaseJ?Pathophysiology,2021,28(1):64-75.14 Zenaro E,Piacentino G,Constantin G.The blood-brain barrier inAlzheimers diseaseJ.Neurobiol Dis,2017,107:41-56.15 Shi Y,Wei B,Li L,et al.Th17 cells and inflammatio
28、n in neurologicaldisorders:Possible mechanisms of actionJ.Front Immunol,2022,13:932152.16 Chen JH,Ke KF,Lu JH,et al.Protection of TGF-1 againstNeuroinflammationandNeurodegenerationinA1-42-InducedAlzheimers Disease Model RatsJ.PLoS One,2015,10(2):e0116549.17 Zenaro E,Pietronigro E,Bianca VD,et al.Neu
29、trophils promoteAlzheimers disease-like pathology and cognitive decline via LFA-1integrinJ.Nat Med,2015,21(8):880-886.18 Vaz M,Silvestre S.Alzheimers disease:Recent treatment strategiesJ.Eur J Pharmacol,2020,887:173554.19 Spampinato SF,Merlo S,Fagone E,et al.Reciprocal InterplayBetween Astrocytes an
30、d CD4+Cells Affects Blood-Brain Barrier andNeuronal Function in Response to AmyloidJ.Front Mol Neurosci,2020,13:120.20 Walsh JT,Hendrix S,Boato F,et al.MHCII-independent CD4+T cellsprotect injured CNS neurons via IL-4J.J Clin Invest,2015,125(2):699-714.21 King E,O Brien J T,Donaghy P,et al.Research
31、paper:Peripheralinflammation in prodromal alzheimers and lewy body dementiasJ.JNeurol Neurosurg Psychiatry,2018,89(4):339.22 Marciani DJ.Promising Results from Alzheimers Disease PassiveImmunotherapy Support the Development of a Preventive VaccineJ.Research(Wash D C),2019,2019:1-14.23 Stoji-Vukani Z
32、,Hadibegovi S,Nicole O,et al.CD8+TCell-MediatedMechanismsContributetotheProgressionofNeurocognitive Impairment in Both Multiple Sclerosis and AlzheimersDiseaseJ?Front Immunol,2020,11:566225.24 Unger MS,Li E,Scharnagl L,et al.CD8+T-cells infiltrateAlzheimersdisease brains and regulate neuronal-and sy
33、napse-related gene expressioninAPP-PS1 transgenic miceJ.Brain Behav Immun,2020,89:67-86.25 Laurent C,Dorothe G,Hunot S,et al.Hippocampal T cell infiltrationpromotes neuroinflammation and cognitive decline in a mouse model oftauopathyJ.Brain,2017,140(1):184.26 Huang LT,Zhang CP,Wang YB,et al.Associat
34、ion of PeripheralBlood Cell Profile With Alzheimers Disease:A Meta-AnalysisJ.FrontAging Neurosci,2022,14:888946.27 Gate D,Saligrama N,Leventhal O,et al.Clonally expanded CD8 Tcells patrol the cerebrospinal fluid in Alzheimers diseaseJ.Nature,2020,577(7790):399-404.28 Altendorfer B,Unger MS,Poupardin
35、 R,et al.TranscriptomicProfiling Identifies CD8+T Cells in the Brain of Aged and AlzheimersDisease Transgenic Mice as Tissue-Resident Memory T CellsJ.JImmunol,2022,209(7):1272-1285.29 Fransen N L,Hsiao CC,van der Poel M,et al.Tissue-residentmemory T cells invade the brain parenchyma in multiple scle
36、rosis whitematter lesionsJ.Brain,2020,143(6):1714-1730.30OlsonKE,MosleyRL,GendelmanHE.ThePotentialforTreg-Enhancing Therapies in Nervous System PathologiesJ.Clin ExpImmunol,2022:uxac084.31 Ciccocioppo F,Lanuti P,Pierdomenico L,et al.The Characterizationof Regulatory T-Cell Profiles in Alzheimers Dis
37、ease and Multiple SclerosisJ.Sci Rep,2019,9(1):8788.32 Faridar A,Thome AD,Zhao W,et al.Restoring regulatory T-celldysfunction in Alzheimers disease through ex vivo expansionJ.BrainCommun,2020,2(2):fcaa112.33 Dansokho C,Ait Ahmed D,Aid S,et al.Regulatory T cells delaydisease progression in Alzheimer-
38、like pathologyJ.Brain,2016,139(4):1237-1251.34 Baek H,Ye M,Kang GH,et al.Neuroprotective effects of CD4+CD25+Foxp3+regulatory T cells in a 3xTg-AD Alzheimers disease modelJ.Oncotarget,2016,7(43):69347-69357.486神经损伤与功能重建2023年8月第18卷第8期Improves Glucose Homeostasis and Reduces WeightJ.Diabetes,2016,65(9
39、):2732-2741.10 Chung PW,Park KY,Kim JM,et al.25-hydroxyvitamin D status isassociated with chronic cerebral small vessel diseaseJ.Stroke,2015,46(1):248-251.11 Feng C,Tang N,Huang H,et al.25-Hydroxy vitamin D level isassociated with total MRI burden of cerebral small vessel disease inischemic stroke p
40、atientsJ.Int J Neurosci,2019,129(1):49-54.12 Schramm S,Schliephake L,Himpfen H,et al.Vitamin D and whitematter hyperintensities:results of the population-based Heinz NixdorfRecall Study and 1000BRAINSJ.Eur J Neurol,2021,28(6):1849-1858.13 Fu J,Xue R,Gu J,et al.Neuroprotective effect of calcitriol on
41、ischemic/reperfusion injury through the NR3A/CREB pathways in the rathippocampusJ.Mol Med Rep,2013,8(6):1708-1714.14 Kim DH,Meza CA,Clarke H,et al.Vitamin D and EndothelialFunctionJ.Nutrients,2020,12(2):575.15 Sayeed I,Turan N,Stein DG,et al.Vitamin D deficiency increasesblood-brain barrier dysfunct
42、ion after ischemic stroke in male ratsJ.ExpNeurol,2019,312:63-71.16 Eyles D,Brown J,Mackay-Sim A,et al.Vitamin D3 and braindevelopmentJ.Neuroscience,2003,118(3):641-653.17 Plzer E,Altbcker A,Darnai G,et al.Intracranial volume inverselycorrelates with serum 25(OH)D level in healthy young womenJ.NutrN
43、eurosci,2015,18(1):37-40.18 Brouwer-Brolsma EM,Van Der Zwaluw NL,Van Wijngaarden JP,etal.Higher Serum 25-Hydroxyvitamin D and Lower Plasma Glucose AreAssociated with Larger Gray Matter Volume but Not with White Matter orTotal Brain Volume in Dutch Community-Dwelling Older AdultsJ.JNutr,2015,145(8):1
44、817-1823.19 刘玥,唐鹏,侯辰,等.脑微出血患者血浆1,25-(OH)_2D3,sLRP1水平与头颅SWI影像学特征的相关性J.现代检验医学杂志,2019,34(5):19-22.20 吕杰,黄红伟,吴丽娟,等.血清25-羟维生素D水平和腔隙性梗死患者血管周围间隙扩大的相关性J.国际脑血管病杂志,2018,26(2):124-130.21 Wuerfel J,Haertle M,Waiczies H,et al.Perivascular spaces-MRImarker of inflammatory activity in the brainJ?Brain,2008,131(Pt
45、9):2332-2240.22VicenteP,HerrM,MahieuxF,etal.VitaminDandneuropsychological assessment of cognitive functions:a study of theirrelationships in a sample of 244 patients attending a memory clinicJ.Geriatr Psychol Neuropsychiatr Vieil,2015,13(4):452-461.23 Al-Amin M,Bradford D,Sullivan RKP,et al.Vitamin
46、D deficiency isassociated with reduced hippocampal volume and disrupted structuralconnectivity in patients with mild cognitive impairmentJ.Hum BrainMapp,2019,40(2):394-406.24 Foucault G,Duval GT,Simon R,et al.Serum Vitamin D andCingulate Cortex Thickness in Older Adults:Quantitative MRI of the Brain
47、J.CurrAlzheimer Res,2019,16(11):1063-1071.25 Latimer CS,Brewer LD,Searcy JL,et al.Vitamin D preventscognitive decline and enhances hippocampal synaptic function in aging ratsJ.Proc NatlAcad Sci U SA,2014,111(41):E4359-4366.26 Ognjanovski N,Maruyama D,Lashner N,et al.CA1 hippocampalnetwork activity c
48、hanges during sleep-dependent memory consolidationJ.Front Syst Neurosci,2014,8:61.27 Lim JS,Kim N,Jang MU,et al.Cortical hubs and subcorticalcholinergic pathways as neural substrates of poststroke dementiaJ.Stroke,2014,45(4):1069-1076.28 许康,杜远敏,李清.脑微出血数量及分布对认知的影响J.神经损伤与功能重建,2021,16(6):347-349,358.29
49、TaghizadehM,TalaeiSA,DjazayeriA,etal.VitaminDsupplementation restores suppressed synaptic plasticity in AlzheimersdiseaseJ.Nutr Neurosci,2014,17(4):172-177.(本文编辑:唐颖馨)35 Baruch K,Rosenzweig N,Kertser A,et al.Breaking immunetolerance by targeting Foxp3+regulatory T cells mitigates Alzheimersdisease pa
50、thologyJ.Nat Commun,2015,6(1):7967.36 Yang Y,He Z,Xing Z,et al.Influenza vaccination in earlyAlzheimers disease rescues amyloidosis and ameliorates cognitive deficitsin APP/PS1 mice by inhibiting regulatory T cellsJ.J Neuroinflammation,2020,17(1):65.37 Breijyeh Z,Karaman R.Comprehensive Review on Al