1、衡水桃城中学七年级下册数学期末压轴难题试卷及答案-百度文库一、选择题1如图,直线,b被直线c所截,下列说法正确的是( )A2与3是同旁内角B1与4是同位角C与是同旁内角D1与2是内错角2春意盎然,在婺外校园里下列哪种运动不属于平移( )A树枝随着春风摇曳B值日学生拉动可移动黑板C行政楼电梯的升降D晚自修后学生两列队伍整齐排列笔直前行3坐标平面内的下列各点中,在轴上的是( )ABCD4下列四个命题,连接两点的线段叫做两点间的距离;经过两点有一条直线,并且只有一条直线;两点之间,线段最短;线段的延长线与射线是同一条射线其中说法正确的有( )A1个B2个C3个D4个5如图,如果ABEF,EFCD,下
2、列各式正确的是( )A1+23=90B12+3=90C1+2+3=90D2+31=1806下列各式正确的是( )ABCD7如图:ABCD,OE平分BOC,OFOE,OPCD,ABO40,则下列结论:OF平分BOD;POEBOF;BOE70;POB2DOF,其中结论正确的序号是( )ABCD8如图,在平面直角坐标系中,将边长为3,4,5的沿轴向右滚动到的位置,再到的位置依次进行下去,发现,那么点的坐标为( )ABCD二、填空题9若a、b为实数,且满足|a2|+0,则ab的立方根为_10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_,
3、b=_11如图,点D是ABC三边垂直平分线的交点,若A64,则D_12如下图,C岛在A岛的北偏东65方向,在B岛的北偏西35方向,则_度13将一张长方形纸条ABCD沿EF折叠后,EC交AD于点G,若FGE62,则GFE的度数是_14观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为_15已知ABx轴,A(-2,4),AB=5,则B点横纵坐标之和为_16如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是_三、解答题17计算:(1)|2|+2;(2)已知(x2)2=16,求x的
4、值18求下列各式中的的值:(1);(2)19完成下列证明:已知:如图,ABC中,AD平分BAC,E为线段BA延长线上一点,G为BC边上一点,连接EG交AC于点H,且ADC+EGD180,过点D作DFAC交EG的延长线于点F求证:EF证明:AD平分BAC(已知),12( ),又ADC+EGD180(已知),EF (同旁内角互补,两直线平行)1E(两直线平行,同位角相等),23( )E (等量代换)又ACDF(已知),3F( )EF(等量代换)20如图,在平面直角坐标系中,三角形OBC的顶点都在网格格点上,一个格是一个单位长度(1)将三角形OBC先向下平移3个单位长度,再向左平移2个单位长度(点与
5、点C是对应点),得到三角形,在图中画出三角形;(2)直接写出三角形的面积为_21(1)如果是的整数部分,是的小数部分,求的平方根(2)当为何值时,关于的方程的解与方程的解互为相反数二十二、解答题22如图1,用两个边长相同的小正方形拼成一个大的正方形(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为32,他能裁出吗?请说明理由二十三、解答题23如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG4
6、0,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由24综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由25如
7、图,在中,是高,是角平分线,()求、和的度数()若图形发生了变化,已知的两个角度数改为:当,则_当,时,则_当,时,则_当,时,则_()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论26如图所示,已知射线.点E、F在射线CB上,且满足,OE平分(1)求的度数;(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数若不存在,请说明理由.【参考答案】一、选择题1A解析:A【分析】同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形依据同位
8、角、内错角以及同旁内角的特征进行判断即可【详解】解:A2与3是同旁内角,故说法正确,符合题意;B1与4不是同位角,是对顶角,故说法错误,不合题意;C2与4不是同旁内角,是内错角,故说法错误,不合题意;D1与2不是内错角,是同位角,故说法错误,不合题意;故选:A【点睛】本题主要考查了同位角、内错角以及同旁内角的特征,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线2A【分析】根据平移的特点可得答案【详解】
9、解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直解析:A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;故选A【点睛】此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3A【分析】根据y轴上点的横坐标为0,即可判断【详解】解:y轴上点的横坐标为0,点符合题意故选:A【点睛】本题主要考查了点
10、的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为04B【分析】利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案【详解】解:连接两点的线段长度叫做两点间的距离,故此选项错误经过两点有一条直线,并且只有一条直线,故此选项正确两点之间,线段最短,故此选项正确线段的延长线是以B为端点延长出去的延长线部分,与射线不是同一条射线故此选项错误综上,正确故选:B【点睛】本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义5D【分析】根据平行线的性质,即可得到3=COE,2+BOE=180,进而得出2+3-1=180【详解】EFCD3=COE31=COE1=B
11、OEABEF2+BOE=180,即2+31=180故选:D【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补6B【分析】根据算术平方根的定义,立方根的定义以及平方根的定义逐一判断即可【详解】解:A.,故本选项不合题意;B.,正确;C.,故本选项不合题意;D.,故本选项不合题意故选:B【点睛】本题考查了平方根,立方根以及算术平方根的定义,熟记相关定义是解题的关键7A【分析】根据ABCD可得BOD=ABO=40,利用平角得到COB=140,再根据角平分线的定义得到BOE=70,则正确;利用OPCD,ABCD,ABO=40,可得POB=50,BOF=20,FOD=20
12、,进而可得OF平分BOD,则正确;由EOB=70,POB=50,POE=20,由BOF=POF-POB=20,进而可得POE=BOF,则正确;由可知POB=50,FOD=20,则不正确【详解】ABCD,BOD=ABO=40,COB=180-40=140,又OE平分BOC,BOE=COB=140=70,故正确;OPCD,POD=90,又ABCD,BPO=90,又ABO=40,POB=90-40=50,BOF=POF-POB=70-50=20,FOD=40-20=20,OF平分BOD,故正确;EOB=70,POB=90-40=50,POE=70-50=20,又BOF=POF-POB=70-50=2
13、0,POE=BOF,故正确;由可知POB=90-40=50,FOD=40-20=20,故POB2DOF,故不正确故结论正确的是,故选A【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答8D【分析】根据旋转的过程寻找规律即可求解【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(解析:D【分析】根据旋转的过程寻找规律即可求解【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继
14、续旋转得A3(24,3),A4(27,0);发现规律:A9(512,3),A10(512+3,0),即(63,0)故选:D【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识二、填空题9-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根【详解】解:|a2|+0,|a2|0,0a20,3b0a2,b3,故答案为:1【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个
15、数都为0”列出方程求得a、b的值10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大11128【解析】【分析】由点D为三边垂直平分线交
16、点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的解析:128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的外心,D=2AA=64D=128故D的度数为128【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEB
17、F,=35解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35=6535=100故答案为:100【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线两直线平行,内错角相等1359【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿解析:59【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利
18、用平行线的性质可求解【详解】解:如图,长方形ABCD沿EF折叠,1=2,ADBC,FGE+GEC=180,FGE=62,GEC=180-62=118,1=2=GEC=59,ADBC,GFE=2,GFE=59故答案为59【点睛】本题主要考查翻折问题,平行线的性质,求解GEC的度数是解题的关键14【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.
19、【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n1,即2n1=11,n=62=21,4=22,8=23,左下角的小正方形中的数字是2n,b=26=64右下角中小正方形中的数字是2n1+2n,a=11+b=11+64=75,a+b=75+64=139故答案为:139【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.15-3或7【分析】由ABx轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案【详解】解:ABx轴,B点的纵坐标解析:-3或7
20、【分析】由ABx轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案【详解】解:ABx轴,B点的纵坐标和A点的纵坐标相同,都是4,又A(-2,4),AB=5,当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解16【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2
21、,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次运动到点,第5次接着运动到点,横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,经过第2021次运动后,故动点的纵坐标为2,经过第2021次运动后,动点的坐标是故答案为:【
22、点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键三、解答题17(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.18(1);(2)【分析】(1)先将原式变形为形式,再利
23、用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),解析:(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),;(2),解得:【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键19角平分线的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【分析】先根据角平分线的定义求得12,再根据平行线的判定证得EFAD,运用平行线的性质和等量代换得到E3,解析:角平分线的定
24、义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【分析】先根据角平分线的定义求得12,再根据平行线的判定证得EFAD,运用平行线的性质和等量代换得到E3,继而由ACDF证出3F,从而得到最后结论【详解】证明:AD平分BAC(已知),12(角平分线的定义),又ADC+EGD180(已知),EFAD(同旁内角互补,两直线平行)1E(两直线平行,同位角相等),23(两直线平行,同位角相等)E3(等量代换)又ACDF(已知),3F(两直线平行,内错角相等)EF(等量代换)故答案为:角平分线的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【点睛】本题考查了平行线的性质和判定,
25、能熟练地运用定理进行推理是解此题的关键20(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O、B、C的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可【详解】解:(1)如图所示,即为所求;(2)由题意得:【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法21(1)3;(2
26、)m=-4【分析】(1)估算,得到的范围,从而确定x、y的值,再代入计算即可(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可【详解析:(1)3;(2)m=-4【分析】(1)估算,得到的范围,从而确定x、y的值,再代入计算即可(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可【详解】解:(1),x=6,y=,=9,的的平方根为3;(2),解得:x=-9,的解为x=9,代入,得,解得:m=-4【点睛】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解二十二、解答题22
27、(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:解析:(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:(1)正方形纸片的面积为,正方形的边长,故答案为:(2)不能;根据题意设长方形的长和宽分别为和长方形面积为:,解得:,长方形的长边为,他不能裁出【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根
28、计算及无理数大小比较是解题的关键二十三、解答题23(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后解析:(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,
29、先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4
30、070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点24(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定
31、义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又
32、 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键25(1)30,70,20;(2)15,5,0,5;(3)当时,;当时,【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30,70,20;(2)15,5,0,5;(3)当时,;当时,【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;(2)先利用三角形内角和定理求出的度数,再根据角平分线和高
33、的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案【详解】(1), 平分,是高, , , , (2)当,时, 平分,是高, , , ;当,时, 平分,是高, , , ;当,时, 平分,是高, , , ;当,时, 平分,是高, , , (3)当 时,即时, 平分,是高, , , ;当 时,即时, 平分,是高, , , ;综上所述,当时,;当时,【点睛】本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键26(1)40;(2)的值不变,比值为;(3)OEC=OBA=6
34、0.【分析】(1)根据OB平分AOF,OE平分COF,即可得出EOB=EOF+FOB=COA,从而得出答案;(2解析:(1)40;(2)的值不变,比值为;(3)OEC=OBA=60.【分析】(1)根据OB平分AOF,OE平分COF,即可得出EOB=EOF+FOB=COA,从而得出答案;(2)根据平行线的性质,即可得出OBC=BOA,OFC=FOA,再根据FOA=FOB+AOB=2AOB,即可得出OBC:OFC的值为1:2(3)设AOB=x,根据两直线平行,内错角相等表示出CBO=AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出OEC,然后利用三角形的内角和等于180列式表示
35、出OBA,然后列出方程求解即可【详解】(1)CBOAC+COA=180C=100COA=180-C=80FOB=AOB,OE平分COFFOB+EOF=(AOF+COF)=COA=40;EOB=40;(2)OBC:OFC的值不发生变化CBOAOBC=BOA,OFC=FOAFOB=AOBFOA=2BOAOFC=2OBCOBC:OFC=1:2(3)当平行移动AB至OBA=60时,OEC=OBA设AOB=x,CBAO,CBO=AOB=x,CBOA,ABOC,OAB+ABC=180,C+ABC=180OAB=C=100OEC=CBO+EOB=x+40,OBA=180-OAB-AOB=180-100-x=80-x,x+40=80-x,x=20,OEC=OBA=80-20=60【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键