资源描述
上海格致中学七年级下册数学期末压轴难题试卷及答案-百度文库
一、选择题
1.下列四个图形中,和是内错角的是( )
A. B. C. D.
2.下列哪些图形是通过平移可以得到的( )
A. B.
C. D.
3.在平面直角坐标系中,点所在的位置是( )
A.轴 B.轴 C.第一象限 D.第四象限
4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a2的算术平方根是a;④的立方根是4.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,,点为上方一点,分别为的角平分线,若,则的度数为( )
A. B. C. D.
6.若,,则( )
A.632.9 B.293.8 C.2938 D.6329
7.如图,和相交于点O,则下列结论正确的是( )
A. B. C. D.
8.如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )
A.(﹣2,1) B.(﹣2,﹣1) C.( 2,﹣1) D.( 2,1)
二、填空题
9.如果,的平方根是,则__________.
10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________.
11.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.
12.如下图,C岛在A岛的北偏东65°方向,在B岛的北偏西35°方向,则______度.
13.如图所示,是用一张长方形纸条折成的,如果,那么___°.
14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果,那么.
15.已知,,,,则________.
16.如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,﹣2),A5(5,﹣2),A6(6,0),…,按这样的规律,则点A2021的坐标为 ____________.
三、解答题
17.(1)计算:
(2)计算:
(3)计算:
(4)计算:
18.求下列各式中x的值.
(1)4x2=64;
(2)3(x﹣1)3+24=0.
19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.
请在括号内填写出证明依据.
证明:∵∠B=∠CGF(已知),
∴AB∥CD( ).
∵∠DGF=∠F(已知),
∴ //EF( ).
∴AB//EF( ).
∴∠B+∠F=180°( ).
20.如图,,,.将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 .
(1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 .
(2)求 的面积.
(3)已知点 在 轴上,以 ,, 为顶点的三角形面积为 ,则 点的坐标为 .
21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题;
(1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= ;
(2)x是的小数部分,y是的整数部分,求x= ,y= ;
(3)求的平方根.
二十二、解答题
22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二十三、解答题
23.如图,直线,点是、之间(不在直线,上)的一个动点.
(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;
(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;
(3)如图3,若点是下方一点,平分, 平分,已知,求的度数.
24.已知:和同一平面内的点.
(1)如图1,点在边上,过作交于,交于.根据题意,在图1中补全图形,请写出与的数量关系,并说明理由;
(2)如图2,点在的延长线上,,.请判断与的位置关系,并说明理由.
(3)如图3,点是外部的一个动点.过作交直线于,交直线于,直接写出与的数量关系,并在图3中补全图形.
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
26.如图①,平分,⊥,∠B=450,∠C=730.
(1) 求的度数;
(2) 如图②,若把“⊥”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;
(3) 如图③,若把“⊥”变成“平分”,其它条件不变,的大小是否变化,并请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.
【详解】
解:A、∠1与∠2不是内错角,选项错误,不符合题意;
B、∠1与∠2不是内错角,选项错误,不符合题意;
C、∠1与∠2是内错角,选项正确,符合题意;
D、∠1和∠2不是内错角,选项错误,不符合题意;
故选:C.
【点睛】
本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.
2.B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
解析:B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
故选:B.
【点睛】
本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.
3.A
【分析】
由于点的纵坐标为0,则可判断点在轴上.
【详解】
解:点的纵坐标为0,
故在轴上,
故选:A.
【点睛】
本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.
4.C
【分析】
利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.
【详解】
解:①连接两点之间的线段的长度叫做这两点间的距离
,故原命题错误,是假命题,符合题意;
②经过直线外一点,有且只有一条直线与这条直线平行,
正确,是真命题,不符合题意;
③a2的算术平方根是a(a≥0),
故原命题错误,是假命题,符合题意;
④的立方根是2,
故原命题错误,是假命题,符合题意;
假命题有3个,
故选:C.
【点睛】
本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.
5.A
【分析】
过G作GMAB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.
【详解】
解:过G作GMAB,
∴∠2=∠5,
∵ABCD,
∴MGCD,
∴∠6=∠4,
∴∠FGC=∠5+∠6=∠2+∠4,
∵FG、CG分别为∠EFG,∠ECD的角平分线,
∴∠1=∠2=∠EFG,∠3=∠4=∠ECD,
∵∠E+2∠G=210°,
∴∠E+∠1+∠2+∠ECD=210°,
∵ABCD,
∴∠ENB=∠ECD,
∴∠E+∠1+∠2+∠ENB=210°,
∵∠1=∠E+∠ENB,
∴∠1+∠1+∠2=210°,
∴3∠1=210°,
∴∠1=70°,
∴∠EFG=2×70°=140°.
故选:A.
【点睛】
此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.
6.B
【分析】
把,再利用立方根的性质化简即可得到答案.
【详解】
解: ,
故选:
【点睛】
本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.
7.A
【分析】
根据对顶角的性质和平行线的性质判断即可.
【详解】
解:A、∵和是对顶角,
∴,选项正确,符合题意;
B、∵与OB相交于点A,
∴与OB不平行,
∴,选项错误,不符合题意;
C、∵AO与BC相交于点B,
∴AO与BC不平行,
∴,选项错误,不符合题意;
D、∵OD与BC相交于点C,
∴OD与BC不平行,
∴,选项错误,不符合题意.
故选:A.
【点睛】
此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等.
8.C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=16
解析:C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=168×12+6,
∴经过2022秒后,该物体应运动了168圈,且继续运动6个单位,
∴从A点开始按逆时针运动6秒到达了C点,
∴经过2022秒后,物体所在位置的坐标为(2,-1).
故选:C.
【点睛】
本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=168×12+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位.
二、填空题
9.-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
解析:-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
10.【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴
解析:
【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴的对称点为,则点P的纵坐标为1
点关于轴的对称点为,则点P的横坐标为2
则点P的坐标为
故答案为:.
【点睛】
本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.
11.;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
解析:;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
12.100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
解析:100
【分析】
根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解.
【详解】
如图,作CE∥AD,则CE∥BF.
∵CE∥AD,∴=65°.
∵CE∥BF,∴=35°.
∴=65°35°=100°.
故答案为:100.
【点睛】
本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.
13.64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻
解析:64
【分析】
如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.
【详解】
解:∵长方形的对边互相平行,
∴∠3=180°﹣∠1=180°﹣128°=52°,
由翻折的性质得,∠2(180°﹣∠3)(180°﹣52°)=64°.
故答案为:64.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.
14.②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③
解析:②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③两直线平行,同位角相等,故错误,是假命题;
④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.
证明:∵a//b,
∴∠CAE+∠ACF=180°.
又AB平分∠CAE,CD平分∠ACF,
所以∠1=∠CAE,∠2=∠ACF.
所以∠1+∠2=∠CAE+∠ACF
=(∠CAE+∠ACF)=×180°=90°.
又∵△ACG的内角和为180°,
∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,
∴AB⊥CD.
∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;
⑤如果,那么,正确,是真命题.
故答案为:②④⑤.
【点睛】
此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.
15.11
【分析】
根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.
【详解】
解:如图示,根据,,三点坐标建立坐标系得:
则.
故答案为:11
【点睛】
此题考查利用直角坐标系求三角形的
解析:11
【分析】
根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.
【详解】
解:如图示,根据,,三点坐标建立坐标系得:
则.
故答案为:11
【点睛】
此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.
16.(2021,﹣2)
【分析】
观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.
【详解
解析:(2021,﹣2)
【分析】
观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.
【详解】
解:观察发现,每6个点形成一个循环,
∵A6(6,0),
∴OA6=6,
∵2021÷6=336…5,
∴点A2021的位于第337个循环组的第5个,
∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,
∴点A2021的坐标为(2021,﹣2).
故答案为:(2021,﹣2).
【点睛】
此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.
三、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据算术平方根的求法计算即可;
(2)先化简绝对值,再合并即可;
(3)分别进行二次根式的化简、开立方,然后合并求解;
(4)先化简绝对值和二次根式,
解析:(1);(2);(3);(4)
【分析】
(1)根据算术平方根的求法计算即可;
(2)先化简绝对值,再合并即可;
(3)分别进行二次根式的化简、开立方,然后合并求解;
(4)先化简绝对值和二次根式,再合并即可.
【详解】
解:(1)
(2)
(3)
(4)
【点睛】
本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识.
18.(1)x=±4;(2)x=-1
【分析】
(1)根据平方根的定义解方程即可;
(2)根据立方根的定义解方程即可.
【详解】
解:(1)4x2=64,
∴x2=16,
∴x=±4;
(2)3(x-1)
解析:(1)x=±4;(2)x=-1
【分析】
(1)根据平方根的定义解方程即可;
(2)根据立方根的定义解方程即可.
【详解】
解:(1)4x2=64,
∴x2=16,
∴x=±4;
(2)3(x-1)3+24=0,
∴3(x-1)3=-24,
∴(x-1)3=-8,
∴x-1=-2,
∴x=-1.
【点睛】
本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.
19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF
解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.
【详解】
证明:∵∠B=∠CGF(已知),
∴AB∥CD(同位角相等,两直线平行),
∵∠DGF=∠F(已知 ),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B+∠F=180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
20.(1)见解析,,;(2)5;(3) 或
【分析】
(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;
(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;
(3)设P点
解析:(1)见解析,,;(2)5;(3) 或
【分析】
(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;
(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;
(3)设P点得坐标为 ,因为以 ,,P为顶点得三角形得面积为 ,
所以 ,求解即可.
【详解】
解:(1) 如图, 为所作.
(0,3),(4,0);
(2) 计算 的面积 .
(3)设P点得坐标为(t,0),
因为以 ,, 为顶点得三角形得面积为 ,
所以 ,解得 或 ,
即 点坐标为 (3,0) 或(5,0).
【点睛】
本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.
21.(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(
解析:(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(2),
,,
的小数部分为:,
的整数部分为:3;
故答案是:;
(3),
,
的平方根为:.
【点睛】
本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出.
二十二、解答题
22.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二十三、解答题
23.(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以
解析:(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.
【详解】
解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),
∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),
∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°-∠CDG,
由(1)可得,∠PDC+∠CEM=∠C=90°,
∴∠AEN=∠CEM,
∴,
(3)设BD交MN于J.
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BJA=∠PBD=50°,
∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.
【点睛】
本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.
24.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可
解析:(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.
【分析】
(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;
(2)如图(见解析),先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定即可得;
(3)先根据点D的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.
【详解】
(1)由题意,补全图形如下:
,理由如下:
,
,
,
,
;
(2),理由如下:
如图,延长BA交DF于点O,
,
,
,
,
;
(3)由题意,有以下两种情况:
①如图3-1,,理由如下:
,
,
,
,
,
由对顶角相等得:,
;
②如图3-2,,理由如下:
,
,
,
,
.
【点睛】
本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
26.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE
解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.
【分析】
(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.
(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.
(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.
【详解】
(1)∵∠B=45°,∠C=73°,
∴∠BAC=62°,
∵AD平分∠BAC,
∴∠BAD=∠CAD=31°,
∴∠ADE=∠B+∠BAD=45°+31°=76°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°-∠ADE=14°.
(2)同(1),可得,∠ADE=76°,
∵FE⊥BC,
∴∠FEB=90°,
∴∠DFE=90°-∠ADE=14°.
(3)的大小不变.=14°
理由:∵ AD平分∠ BAC,AE平分∠BEC
∴∠BAC=2∠BAD,∠BEC=2∠AEB
∵ ∠BAC+∠B+∠BEC+∠C =360°
∴2∠BAD+2∠AEB=360°-∠B-∠C=242°
∴∠BAD+∠AEB=121°
∵ ∠ADE=∠B+∠BAD
∴∠ADE=45°+∠BAD
∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°
【点睛】
本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.
展开阅读全文