1、一、解答题1如图,在平面直角坐标系中,已知ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得SPOB=SABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究HBM,BMA,MAC之间的数量关系,并证明你的结论.2已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB
2、,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数3如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)4如图,直线与、分别交于点、,点在直线上,过点作,垂足为点(1
3、)如图1,求证:;(2)若点在线段上(不与、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 5(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数6已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,
4、当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)7据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=_;8数学家华罗庚
5、在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根华罗庚脱口而出:39众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:,又,能确定59319的立方根是个两位数59319的个位数是9,又,能确定59319的立方根的个位数是9如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3因此59319的立方根是39(1)现在换一个数195112,按这种方法求立方根,请完成下列填空它的立方根是_位数它的立方根的个位数是_它的立方根的十位数是_195112的立方根是_(2)
6、请直接填写结果:_9阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即请你类比此方法计算:其中n为正整数10阅读下列解题过程:为了求的值,可设,则,所以得,所以;仿照以上方法计算:(1) .(2)计算:(3)计算:11我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等(1)2020属于 类(填A,B或C);(2)
7、从A类数中任取两个数,则它们的和属于 类(填A,B或C); 从A、B类数中任取一数,则它们的和属于 类(填A,B或C); 从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号)属于C类;属于A类;,属于同一类12阅读理解:一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分
8、出来的右边数,其中a,b,c数位相同,若bacb,我们称这个多位数为等差数例如:357分成了三个数3,5,7,并且满足:5375;413223分成三个数41,32,23,并且满足:32412332;所以:357和413223都是等差数(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)(2)若一个三位数是等差数,试说明它一定能被3整除;(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T13已知、两点的坐标分别为,将线段水平向右平移到,连接,得四边形,且(1)点的坐标为_,点D的坐标为_;(2)如图1,轴于,上有一动点,连接、,求最小时点位置及其坐标,并说明理由
9、;(3)如图2,为轴上一点,若平分,且于,求与之间的数量关系14如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)15如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=_,b=_,BCD的面积为_;(2)如图2,若ACBC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当CPQ=CQP时,求证:BP
10、平分ABC;(3)如图3,若ACBC,点E是点A与点B之间一动点,连接CE,CB始终平分ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由. 16阅读下列材料: 我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离; 例 1解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为 例 2解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为或,所以方程的解为或,因此不等式的解集为或参考阅读材料,解答下列问题: (1)方程的解为 ; (2)解不等式:; (3)解不等式:17
11、如图1,在直角坐标系中直线与、轴的交点分别为,且满足.(1)求、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围18如图所示,在直角坐标系中,已知,将线段平移至,连接、,且,点在轴上移动(不与点、重合)(1)直接写出点的坐标;(2)点在运动过程中,是否存在的面积是的面积的3倍,如果存在请求出点的坐标,如果不存在请说明理由;(3)点在运动过程中,请写出、三者之间存在怎样的数量关系,并说明理由19已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A
12、型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费20某校规划在一块长AD为18 m、宽AB为13 m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪
13、两边之比AMAN89,问通道的宽是多少?21在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点(1)若,求C点的坐标;(2)若,连接,过点B作的垂线l判断直线l与x轴的位置关系,并说明理由;已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数负数还是0?并说明理由22如图,平面直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足将点B向右平移24个单位长度得到点C点D,E分别为线段BC,OA上一动点,点D从点C以2个单位长度/秒的速度向点B运动,同时
14、点E从点O以3个单位长度/秒的速度向点A运动,在D,E运动的过程中,DE交四边形BOAC的对角线OC于点F设运动的时间为t秒(0t10),四边形BOED的面积记为S四边形BOED(以下面积的表示方式相同)(1)求点A和点C的坐标;(2)若S四边形BOEDS四边形ACDE,求t的取值范围;(3)求证:在D,E运动的过程中,SOEFSDCF总成立23阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因
15、为解得因为t为整数,所以t=0或-1所以该方程的正整数解为和 (1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案24阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值25对于实数x,若,则符
16、合条件的中最大的正数为的内数,例如:8的内数是5;7的内数是4(1)1的内数是_,20的内数是_,6的内数是_;(2)若3是x的内数,求x的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,如图2;当时,如图2,;用表示的内数;当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标(若有多点并列最远,全部写出)26在平面直角坐标系中,点,的坐标分别为,且,满足方程为二元一次方程(1)求,的坐
17、标(2)若点为轴正半轴上的一个动点如图1,当时,与的平分线交于点,求的度数;如图2,连接,交轴于点若成立设动点的坐标为,求的取值范围27阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作例如,那么,其中例如,请你解决下列问题:(1)_,_;(2)如果,那么x的取值范围是_;(3)如果,那么x的值是_;(4)如果,其中,且,求x的值28如图,在平面直角坐标系中,点,其中,是16的算术平方根,线段由线段平移所得,并且点与点A对应,点与点对应(1)点A的坐标为 ;点的坐标为 ;点的坐标为 ;(2)如图,是线段上不同于的任意一点,求证:;(3)如图,若点满足,点是线段OA上一动点(与点、A不重
18、合),连交于点,在点运动的过程中,是否总成立?请说明理由29我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况如图1,灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环两灯交叉照射且不间断巡视若灯转动的速度是度/秒,灯转动的速度是度/秒,且, 满足若这一带江水两岸河堤相互平行,即,且根据相关信息,解答下列问题(1)_,_(2)若灯的光射线先转动24秒,灯的光射线才开始转动,在灯的光射线到达之前,灯转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯的光射线到达之前,若两灯射出的光射线交于点
19、,过点作交于点,则在转动的过程中,与间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围30学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元(1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?【参考答案】*试卷处理标记,请不要删除一、解答题1(1)C(-2,0);(2)
20、点P坐标为(0,6)或(0,-6);(3)BMA=MACHBM,证明见解析.【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出SABC=9,SBOP=OP,再根据SPOB=SABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到BH/AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)A(4,0),OA=4,C点x轴负半轴上,AC=6,OC=AC-OA=2,C(-2,0);(2)B(2,3),SABC=63=9,SBOP=OP2=OP,又SPOB=SABC,O
21、P=9=6,点P坐标为(0,6)或(0,-6);(3)BMA=MACHBM,证明如下:把点C往上平移3个单位得到点H,C(-2,0),H(-2,3),又B(2,3),BH/AC; 如图1,当点M在线段HC上时,过点M作MN/AC,MAC=AMN,MN/HB,HBM=BMN,BMA=BMN+AMN,BMA=HBM+MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN/AC,MAC=AMN,MN/HB,HBM=BMN,BMA=AMN-BMN,BMA=MAC-HBM;综上,BMA=MACHBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正
22、确进行分类并准确画出图形是解题的关键.2(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBG
23、M+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关
24、键3(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CD
25、EF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (1
26、80-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线4(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作
27、出平行线,找出角与角之间的数量关系5(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+
28、50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题
29、主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键6(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质7(1)两;(2)2,3;(3)24,-48【分
30、析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论【详解】解:(1)由103=1000,1003=1000000,100032768100000,10100,是两位数;故答案为:两;(2)只有个位数是2的立方数是个位数是8,的个位上的数是2划去32768后面的三位数768得到32,因为33=27,43=64,273264,3040的十位上的数是3故答案为:2,3;(3)由103=1000,1003=1000000,1000138241000000,10100,是两位数;只有个位数是4的
31、立方数是个位数是4,的个位上的数是4划去13824后面的三位数824得到13,因为23=8,33=27,81327,2030=24;由103=1000,1003=1000000,10001105921000000,10100,是两位数;只有个位数是8的立方数是个位数是2,的个位上的数是8,划去110592后面的三位数592得到110,因为43=64,53=125,64110125,4050=-48;故答案为:24,-48【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数8(1)两;8;5;58;(2)24;56【分析】(1)根据例题进行推理得出答案;根
32、据例题进行推理得出答案;根据例题进行推理得出答案;根据得出答案;(2)先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1), ,能确定195112的立方根是一个两位数,故答案为:两;195112的个位数字是2,又,能确定195112的个位数字是8,故答案为:8;如果划去195112后面三位112得到数195,而,可得,由此能确定195112的立方根的十位数是5,故答案为:5;根据可得:195112的立方根是58,故答案为:58;(2)13824的立方根是两位数,立方根的个位数是4,十位数是2,1382
33、4的立方根是24,故答案为:24;175616的立方根是两位数,立方根的个位数是6,十位数是5,175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.9(1);(2)【解析】【分析】设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;同理即可得到所求式子的值【详解】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比
34、的数学思想解答问题10(1);(2);(3).【分析】仿照阅读材料中的方法求出所求即可【详解】解:(1)根据得:(2)设,则,即:(3)设,则,即:同理可求【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键11(1)A;(2)B;C;B;(3)【分析】(1)计算,结合计算结果即可进行判断;(2)从A类数中任取两个数进行计算,即可求解;从A、B两类数中任取两个数进行计算,即可求解;根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断【详解】解:(1)根据
35、题意,2020被3除余数为1,属于A类;故答案为:A(2)从A类数中任取两个数,如:(1+4)3=12,(4+7)3=32,两个A类数的和被3除余数为2,则它们的和属于B类;从A、B类数中任取一数,与同理,如:(1+2)3=1,(1+5)3=2,(4+5)3=3,从A、B类数中任取一数,则它们的和属于C类;从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则,余数为2,属于B类;故答案为:B;C;B(3)从A类数中任意取出m个数,从B类数中任意取出n个数,余数之和为:m1+n2=m+2n,最后的结果属于C类,m+2n能被3整除,即m+2n属于C类
36、,正确;若m=1,n=1,则|mn|=0,不属于B类,错误;观察可发现若m+2n属于C类,m,n必须是同一类,正确;综上,正确故答案为:【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答12(1)不是,是;(2)见解析;(3)432或456或840或864或888【分析】(1)根据等差数的定义判定即可;(2)设这个三位数是M,根据等差数的定义可知,进而得出即可(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即
37、可求解【详解】解:(1) ,148不是等差数, ,514335是等差数;(2)设这个三位数是M, , , ,这个等差数是3的倍数;(3)由(2)知 ,T是24的倍数, 是8的倍数,2c是偶数,只有当35a也是偶数时才有可能是8的倍数,或4或6或8,当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意;当时,此时若,则,若,则,(144、152是8的倍数),当时,此时若,则,若,则,(216、244是8的倍数),当时,此时若,则,若,则,若,则,(280,288,296是8的倍数),若a是偶数,则c也是偶数时b才有意义,和是c是奇数均
38、不符合题意,当时, ,当时,当时,当时,当时,综上,T为432或456或840或864或888【点睛】本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键13(1),;(2),理由见解析;(3)【分析】(1)根据已知条件求出AD和BC的长度,即可得到D、C的坐标;(2)连接BD与直线CG相交,其交点Q即为所求,然后根据求出 QC、QG后即可得到Q点坐标;(3)过H作HFAB,过C作CMED,则根据已知条件、平行线的性质和角的有关知识可以得到 【详解】(1)解:由题意可得四边形ABCD是平行四边形,且AD与BC间距离为1-(-1)=2,平
39、行四边形ABCD的高为2,AD=BC=S四边形ABCD2=122=6,C点坐标为(-4+6,-1)即(2,-1),D点坐标为(-2+6,1)即(4,1);(2)解:如图,连接交于,此时最小(两点之间,线段最短),过作于,设,又,(3),平分,又,设,则,过作,又,过作,于,又,【点睛】本题考查平行线的综合应用,熟练掌握平行线的判定与性质、平移坐标变换规律、两点之间线段最短的性质、角的有关知识和运算是解题关键 14(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分
40、当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=ABE=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,