收藏 分销(赏)

七年级下册数学期末几何压轴题试卷及答案(人教版)-(一).doc

上传人:人****来 文档编号:4881733 上传时间:2024-10-17 格式:DOC 页数:47 大小:1.80MB
下载 相关 举报
七年级下册数学期末几何压轴题试卷及答案(人教版)-(一).doc_第1页
第1页 / 共47页
七年级下册数学期末几何压轴题试卷及答案(人教版)-(一).doc_第2页
第2页 / 共47页
七年级下册数学期末几何压轴题试卷及答案(人教版)-(一).doc_第3页
第3页 / 共47页
七年级下册数学期末几何压轴题试卷及答案(人教版)-(一).doc_第4页
第4页 / 共47页
七年级下册数学期末几何压轴题试卷及答案(人教版)-(一).doc_第5页
第5页 / 共47页
点击查看更多>>
资源描述

1、一、解答题1在平面直角坐标系中,点坐标为,点坐标为,过点作直线轴,垂足为,交线段于点.(1)如图1,过点作,垂足为,连接.填空:的面积为_;点为直线上一动点,当时,求点的坐标;(2)如图2,点为线段延长线上一点,连接,线段交于点,若,请直接写出点的坐标为_.2已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系3已知点C在射线OA上(1)如图,CDOE,若AOB90,OCD120,求BOE的度数;(2)在中,将射线OE沿射线OB平移得OE(如图),若AOB,探究OCD与BO

2、E的关系(用含的代数式表示)(3)在中,过点O作OB的垂线,与OCD的平分线交于点P(如图),若CPO90,探究AOB与BOE的关系4如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间5已知,点在上,点在 上(1

3、)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3)如图4中,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数6如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由7规定:求若干个相同的有理数(均不等于 0)的除

4、法运算叫做除方,如 222,(3)(3)(3)(3)等,类比有理数的乘方,我们把222记作2,读作“2的圈 3 次方,”(3)(3)(3)(3)记作(3),读作:“(3)的圈 4 次方”一般地,把个记作 a,读作 “a 的圈 n次方”(初步探究)(1)直接写出计算结果:2,()(深入思考)2 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式5;()(3)猜想:有理数 a(a0)的圈n(n3)次方写成幂的形式等于多少(4)应用:求(-3)8(-3)-()9()8阅读材料,解

5、答问题:如果一个四位自然数,十位数字是千位数字的2倍与百位数字的差,个位数字是千位数字的2倍与百位数字的和,则我们称这个四位数“依赖数”,例如,自然数2135,其中3221,522+1,所以2135是“依赖数”(1)请直接写出最小的四位依赖数;(2)若四位依赖数的后三位表示的数减去百位数字的3倍得到的结果除以7余3,这样的数叫做“特色数”,求所有特色数(3)已知一个大于1的正整数m可以分解成mpq+n4的形式(pq,nb,p,q,n均为正整数),在m的所有表示结果中,当nqnp取得最小时,称“mpq+n4”是m的“最小分解”,此时规定:F(m),例:2014+2422+24119+14,因为1

6、191124212222,所以F(20)1,求所有“特色数”的F(m)的最大值9我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称pq是n的完美分解并规定:例如18可以分解成118,29或36,因为1819263,所以36是18的完美分解,所以F(18)(1)F(13) ,F(24) ;(2)如果一个两位正整数t,其个位数字是a,十位数字为,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大

7、值10规律探究,观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:请回答下列问题:(1)按以上规律写出第5个等式:= _ = _ (2)用含n的式子表示第n个等式:= _ = _(n为正整数)(3)求11阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:,即,的整数部分为2,小数部分为。请解答(1)的整数部分是_,小数部分是_。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部

8、分,y是其小数部分,直接写出的值.12据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_;(3)已知和分别是两个数的立方,仿照上面的计算过程,请计算:;13如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移

9、,平移后的图形为三角形DEC,点C的坐标为(3,2)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标14问题情境:(1)如图1,求度数小颖同学的解题思路是:如图2,过点作,请你接着完成解答问题迁移:(2)如图3,点在射线上运动,当点在、两点之间运动时,试判断、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、三点不重合),请你猜想、之

10、间的数量关系并证明15如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且OAB的面积为6(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及BPQ的面积16某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;

11、批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x千克苹果(),问师傅应怎样选择两家批发商所花费用更少?17(了解概念)在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”(理解运用)在平面直角坐标系中,(1)线段的“勾股距” ;(2)若点在第三象限,且,求并判断是否为“等距三角形”(拓展提升)(3

12、)若点在轴上,是“等距三角形”,请直接写出的取值范围18在平面直角坐标系中,点A(1,2),点B(a,b),且,点E(6,0),将线段AB向下平移m个单位(m0)得到线段CD,其中A、B的对应点分别为C、D(1)求点的坐标及三角形ABE的面积;(2)当线段CD与轴有公共点时,求的取值范围;(3)设三角形CDE的面积为,当时,求的取值范围19某企业用规格是170cm40cm的标准板材作为原材料,按照图所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图

13、所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计)一共可裁剪出甲型板材张,乙型板材张; 恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?20阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?21为鼓励

14、市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下超过15吨但不超过25吨的部分超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费_元;(用,的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求,的值(3)在第(2)题的条件下,若交水费76.5元,求本月用水量(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的,的值分别上

15、调了整数角钱(没超过1元),其他都没变”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况22一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值23七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图比赛中,所有同学均按要求一对一连线,无多连、少连(1)分数5,10,15,20中,每人得分不可能是_分(2)七年(1)班有4人全

16、错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数问(1)班有多少人得满分?若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?24学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆(1)学校准备租用辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小

17、客车至少要有人,请你帮助设计租车方案25对x,y定义一种新运算T,规定:T(x,y)=ax+2by1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a0+2b11=2b1(1)已知T(1,1)=2,T(4,2)=3求a,b的值;若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?26阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正

18、整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因为解得因为t为整数,所以t=0或-1所以该方程的正整数解为和 (1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案27阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作例如,那么,其中例如,请你解决下列问题:(1)_,_;(2)如果,那么x的取值范围是_;(3)如果,那么x的值是_;(4)如果,其中,且,求x的值28请阅读求绝对值不等式和的

19、解的过程对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对值小于,所以的解为;对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或(1)求绝对值不等式的解(2)已知绝对值不等式的解为,求的值(3)已知关于,的二元一次方程组的解满足,其中是负整数,求的值29如图,在平面直角坐标系中,已知,满足平移线段得到线段,使点与点对应,点与点对应,连接,(1)求,的值,并直接写出点的坐标;(2)点在射线(不与点,重合)上,连接,若三角形的面积是三角形的面积的2倍,求点的坐标;设,求,满足的关系式30我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的

20、情况如图1,灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环灯光射线自顺时针旋转至便立即逆时针旋转至,如此循环两灯交叉照射且不间断巡视若灯转动的速度是度/秒,灯转动的速度是度/秒,且, 满足若这一带江水两岸河堤相互平行,即,且根据相关信息,解答下列问题(1)_,_(2)若灯的光射线先转动24秒,灯的光射线才开始转动,在灯的光射线到达之前,灯转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯的光射线到达之前,若两灯射出的光射线交于点,过点作交于点,则在转动的过程中,与间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围【参考答案】*试

21、卷处理标记,请不要删除一、解答题1(1)6;的坐标为,;(2).【解析】【分析】(1)易证四边形AECO为矩形,则点B到AE的距离为OA,AE=OC=3,OA=CE=4,SABE=AEOA,即可得出结果;设点的坐标为,分两种情况: 点在点上方,连接,得=+=8,点在点的下方,得=8,分别列出方程解方程即可得出结果;(2)由SAOF=SQBF,则SAOB=SQOB,AOB与QOB是以AB为同底的三角形,高分别为:OA、QC,得出OA=CQ,即可得出结果【详解】解:(1)CDx轴,AECD,AEx轴,四边形AECO为矩形,点B到AE的距离为OA,点A(0,4),点C(3,0),AE=OC=3,OA

22、=CE=4,SABE=AEOA=34=6,故答案为:6;设点的坐标为.(i)点坐标为,点坐标为,.,.点在点上方,连接(如图1).根据题意得,.当点的坐标为.(ii)点在点的下方,连接(如图2).点在点的下方,根据题意得,.当点的坐标为.(2)(2)SAOF=SQBF,如图3所示:SAOB=SQOB,AOB与QOB是以AB为同底的三角形,高分别为:OA、QC,OA=CQ,点Q的坐标为(3,4),故答案为:(3,4)【点睛】本题是三角形综合题,主要考查了图形与点的坐标、矩形的判定与性质、三角形面积的计算等知识,熟练掌握图形与点的坐标,灵活运用割补法表示三角形面积列出方程是解题的关键2(1)说明过

23、程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=A

24、BE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(

25、ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF),由(1)得:因为ABCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质3(1)150;(2)OCD+BOE=360-;(3)AOB=BOE【分析】(1)先根据平行线的性质得到AOE的度数,再根据直角、周角的定义即可求得BOE的度数;(2)如图,过O点作OFCD,根据平行线的判定和性质可得OCD、BOE的数量关系;(3)由已知推出CPOB,得到AOB+PCO=180,结合角平分线的定

26、义可推出OCD=2PCO=360-2AOB,根据(2)OCD+BOE=360-AOB,进而推出AOB=BOE【详解】解:(1)CDOE,AOE=OCD=120,BOE=360-AOE-AOB=360-90-120=150;(2)OCD+BOE=360-证明:如图,过O点作OFCD,CDOE,OFOE,AOF=180-OCD,BOF=EOO=180-BOE,AOB=AOF+BOF=180-OCD+180-BOE=360-(OCD+BOE)=,OCD+BOE=360-;(3)AOB=BOE证明:CPO=90,POCP,POOB,CPOB,PCO+AOB=180,2PCO=360-2AOB,CP是O

27、CD的平分线,OCD=2PCO=360-2AOB,由(2)知,OCD+BOE=360-=360-AOB,360-2AOB+BOE=360-AOB,AOB=BOE【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键4(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DD

28、EEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:

29、15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEF

30、DAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或3

31、0s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键5(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BM

32、EMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ

33、30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键6(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得

34、HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,

35、HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点7(1),

36、-2;(2)()4,(2)8;(3);(4).【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为,则a=a()n-1;(4)将第二问的规律代入计算,注意运算顺序【详解】解:(1)2=222=,()=()()=2;(2)5=5=()4,同理得;()=(2)8;(3)a=a; (4)(-3)8(-3)-()9()=(-3)8( )7 -()9(-2)6=-3-(-)3=-3+=.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一

37、方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序8(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能为0,最小只能取1;根据题目得出相应的公式:十位2千位百位,个位2千位+百位,分别求出十位和个位,即可求出最小的四位依赖数;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2xy),个位数字是(2x+y),依据题意列出代数式然后表示为7的倍数加余数形式,然后求出x、y即可,从而求出所有特色数;(3)根据最小分解的定义可知: n越小,

38、p、q越接近,nqnp才越小,才是最小分解,此时F(m),故将(2)中特色数分解,找到最小分解,然后将n、p、q的值代入F(m),再比较大小即可.【详解】解:(1)由题意可知:千位一定是1,百位取0,十位上的数字为:210=2,个位上的数字为:210=2则最小的四位依赖数是1022;(2)设千位数字是x,百位数字是y,根据“依赖数”定义,则有:十位数字是(2xy),个位数字是(2x+y),根据题意得:100y+10(2xy)+2x+y3y88y+22x21(4y+x)+(4y+x),21(4y+x)+(4y+x)被7除余3,4y+x3+7k,(k是非负整数)此方程的一位整数解为:x=4,y=5

39、(此时2x+y10,故舍去);x3,y7(此时2xy0,故舍去);x3,y0;x2,y2;x1,y4(此时2xy0,故舍去);特色数是3066,2226(3)根据最小分解的定义可知: n越小,p、q越接近,nqnp才越小,才是最小分解,此时F(m),由(2)可知:特色数有3066和2226两个,对于30666135+14=6150+24161315261250,3066取最小分解时:n=2,p=50,q=61F(3066)对于22268925+146534+24,189125265234,2226取最小分解时:n=2,p=34,q=65F(2226)故所有“特色数”的F(m)的最大值为:【点睛

40、】此题考查的是新定义类问题,理解题意,并根据新定义解决问题是解决此题的关键.9(1),(2)所以和谐数为15,26,37,48,59;(3)F(t)的最大值是【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F(13),F(24);(2)原两位数可表示为 新两位数可表示为 (且b为正整数 )b=2,a=5; b=3,a=6, b=4,a=7,b=5,a=8 b=6,a=9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F(t)的最大值是【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.10(1);(2);(3).【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服