1、2022年人教版七7年级下册数学期末考试试卷(及答案)一、选择题1如图所示,下列结论中正确的是( ) A和是同位角B和是同旁内角C和是内错角D和是对顶角2在下列现象中,属于平移的是( )A荡秋千运动B月亮绕地球运动C操场上红旗的飘动D教室可移动黑板的左右移动3在平面直角坐标系中,点所在的位置是( )A轴B轴C第一象限D第四象限4下列命题:平面内,垂直于同一条直线的两直线平行;经过直线外一点,有且只有一条直线与这条直线平行;垂线段最短;同旁内角互补其中,正确命题的个数有( )A3个B2个C1个D0个5将一副三角板按如图放置,如果,则有是( )A15B30C45D606下列等式正确的是()ABCD
2、7如图,ABCD为一长方形纸片,ABCD,将ABCD沿E折叠,A、D两点分别与A、D对应,若CFE2CFD,则AEF的度数是( )A60B80C75D728如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,均在格点上,其顺序按图中“”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,1),P5(1,1),P6(1,2)根据这个规律,点P2021的坐标为()A(505,505)B(505,506)C(506,506)D(505,505)九、填空题9若x,则x的值为_十、填空题10已知点P(3,1)关于y轴的对称点Q的坐标是_.十一、填空题11如
3、图,分别作和的角平分线交于点,称为第一次操作,则_;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则_十二、填空题12如图:已知ABCD,CEBF,AEC45,则BFD_十三、填空题13如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则_十四、填空题14按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是_十五、填空题15在平面直角坐标系中,点P的坐标为,则点P在第_象限十六、填空题16在平面直角坐标系中,一个智能机器
4、人接到如下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,第n次移动到An,则A2021的坐标是_十七、解答题17计算下列各式的值:(1)|2| + (1)2021;(2)十八、解答题18求下列各式中的x值(1)x26(2)(2x1)3=4十九、解答题19根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)二十、解答题20已知在平面直角坐标系中有三点,请回答如下问题:(1)在平面直角坐标系内描出、,连接三边得到;(2)将三点向下平移2个单位长度
5、,再向左平移1个单位,得到;画出,并写出、三点坐标;(3)求出的面积二十一、解答题21在学习实数内容时,我们通过“逐步逼近”的方法可以计算出的近似值,得出1.41.5利用“逐步逼近“法,请回答下列问题:(1)介于连续的两个整数a和b之间,且ab,那么a ,b (2)x是+2的小数部分,y是1的整数部分,求x ,y (3)(x)y的平方根二十二、解答题22有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二十三、解答题23已知,ABC
6、D,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数二十四、解答题24如图1,E是、之间的一点(1)判定,与之间的数量关系,并证明你的结论;(2)如图2,若、的两条平分线交于点F直接写出与之间的数量关系;(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小二十五、解答题25(1)如图1所示,ABC中,A
7、CB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值【参考答案】一、选择题1B解析:B【分析】根据同位角,内错角,同旁内角以及对顶角的定义进行解答【详解】解:A、1和2是同旁内角,故本选项错误;B、2和3是同旁内角,故本选项正确;C、1和4是同位角,故本选项错误;D、3和4是邻补角,故本选项错误;故选:B【点睛】本题考查了同位角,内错角,同旁内角以及对顶角的定义解答此类题
8、确定三线八角是关键,可直接从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义2D【分析】根据平移的性质依次判断,即可得到答案【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室解析:D【分析】根据平移的性质依次判断,即可得到答案【详解】A、荡秋千运动是旋转,故本选项错误;B、月亮绕地球运动是旋转,故本选项错误;C、操场上红旗的飘动不是平移,故本选项错误;D、教室可移动黑板的左右移动是平移,故本选项正确故选:D【点睛】本题考查了平移
9、的知识;解题的关键是熟练掌握平移性质,从而完成求解3A【分析】由于点的纵坐标为0,则可判断点在轴上【详解】解:点的纵坐标为0,故在轴上,故选:A【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点4A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案【详解】平面内,垂直于同一条直线的两直线平行;故正确,经过直线外一点,有且只有一条直线与这条直线平行,故正确垂线段最短,故正确,两直线平行,同旁内角互补,故错误,正确命题有,共3个,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题
10、设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理5C【分析】根据一副三角板的特征先得到E=60,C=45,1+2=90,再根据已知求出1=60,从而可证得ACDE,再根据平行线的性质即可求出4的度数【详解】解:根据题意可知:E=60,C=45,1+2=90,1=60,1=E,ACDE,4=C=45故选:C【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键6C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、表示计算算术平方根,所以,故错误C、
11、,故正确D、,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7D【分析】先根据平行线的性质,由ABCD,得到CFE=AEF,再根据翻折的性质可得DFE=EFD,由平角的性质可求得CFD的度数,即可得出答案【详解】解:ABCD,CFE=AEF,又DFE=EFD,CFE=2CFD,DFE=EFD=3CFD,DFE+CFE=3CFD+2CFD=180,CFD=36,AEF=CFE=2CFD=72故选:D【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键8A【分析】先分别求出点的坐标,再归纳类推出一般规律
12、即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,解析:A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,故选:A【点睛】本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键九、填空题90或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.【详解】02=0,12=1,0的算术平方根为0,1的算术平方根解析:0或1【分析】根
13、据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.【详解】02=0,12=1,0的算术平方根为0,1的算术平方根为1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.十、填空题10(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:点Q与点P(3,1)关于y轴对称,Q(-3,-1).故答案为(-3,-1).解析:(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,
14、横坐标互为相反数即可解答.【详解】解:点Q与点P(3,1)关于y轴对称,Q(-3,-1).故答案为(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.十一、填空题1190 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算E解析:90 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算EP1F,再同理求出P2,P3,总结规律可得【详解】解:过P1作P
15、1QAB,则P1QCD,ABCD,AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,和的角平分线交于点,EP1F=EP1Q+FP1Q=AEP1+CFP1=(AEF+CFE)=90;同理可得:P2=(AEF+CFE)=45,P3=(AEF+CFE)=22.5,.,故答案为:90,【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解十二、填空题1245【分析】根据平行线的性质可得ECDAEC,BFDECD,等量代换即可求出BFD【详解】解:ABCD,ECDAEC,CEBF,BFDECD,解析:45【
16、分析】根据平行线的性质可得ECDAEC,BFDECD,等量代换即可求出BFD【详解】解:ABCD,ECDAEC,CEBF,BFDECD,BFDAEC,AEC45,BFD45故答案为:45【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键十三、填空题135【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FE解析:5【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FED,又EF
17、B=45,B=90,BEF=45,DEC=(180-45)=67.5故答案为:67.5【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键十四、填空题14131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.十五、填空题15三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可【详解】解:a2为非负数,-a2-1为
18、负数,点P的符号为(-,-)点P在第三象限故答案解析:三【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可【详解】解:a2为非负数,-a2-1为负数,点P的符号为(-,-)点P在第三象限故答案为:三【点睛】本题考查了点的坐标解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数牢记点在各象限内坐标的符号特征是正确解答此类题目的关键四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标【详解】解
19、:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),202145051,所以A2021的坐标为(5052+1,0),则A2021的坐标是(1011,0)故答案为:(1011,0)【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般十七、解答题17(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法
20、分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,解析:(1)3;(2)2【分析】(1)根据绝对值、立方根、乘方解决此题(2)先用乘法分配律去括号,从而简化运算再根据算术平方根解决本题【详解】解:(1)原式,3.(2)原式,316,2.【点睛】本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键十八、解答题18(1);(2)【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:解析:(1);(2)【分析
21、】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:(2x1)3=8,开立方得:,2x=1,解得:【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个十九、解答题19;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两
22、直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键二十、解答题20(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、
23、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:(-4,-2)、(4,2)、(0,3);(3)的面积: 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键二十一、解答题21(1)4;5;(2);3;(3)8【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(2);3;(3)8【分析】(1)首先
24、估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解:(1)161725,a4,b5故答案为:4;5(2),由此:的整数部分为6,小数部分为,故答案为:;3(3)当,时,代入,64的平方根为:【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.二十二、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米
25、(2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据
26、平行线的性质解答即可解析:(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,H
27、PAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键二十四、解答
28、题24(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,解析:(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,由(1)的结论得AFDBAFCDF,根据角平分线的定义得到BAFBAE,CDFCDE,则AFD(BAECDE),加上(1)的结论得到AFDAED;(3)由(1)的结论得AGDBAFCDG,利用折叠性质得CDG4CDF,再利用等量代换得到AGD2AEDBAE,加
29、上90AGD1802AED,从而可计算出BAE的度数【详解】解:(1)理由如下:作,如图1,;(2)如图2,由(1)的结论得,、的两条平分线交于点F,;(3)由(1)的结论得,而射线沿翻折交于点G,【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等二十五、解答题25(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC解析:(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE
30、,ACF=ACB,依据CAE是ABC的外角,可得B=CAE-ACB,再根据CAD是ACF的外角,即可得到F=CAD-ACF=CAE-ACB=(CAE-ACB)=B;(2)由(1)可得,F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到H=90+ABG,进而得到F+H=90+CBG=180【详解】解:(1)AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)B45,故答案为45;AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)Ba;(2)由(1)可得,FABC,AGB与GAB的角平分线交于点H,AGHAGB,GAHGAB,H180(AGH+GAH)180(AGB+GAB)180(180ABG)90+ABG,F+HABC+90+ABG90+CBG180,F+H的值不变,是定值180【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键