1、宜昌市七年级下册数学期末压轴难题试题及答案解答一、选择题1下列四幅图中,和是同位角的是( )ABCD2下列各组图形可以通过平移互相得到的是()ABCD3下列各点中,在第四象限的是( )ABCD4给出以下命题:对顶角相等;在同一平面内, 垂直于同一条直线的两条直线平行;相等的角是对顶角;内错角相等其中假命题有( )A1个B2个C3个D4个5直线,则( ) A15B25C35D206若,则( )A632.9B293.8C2938D63297如图,已知直线,点为直线上一点,为射线上一点若,交于点,则的度数为( ) A45B55C60D758如图,在平面直角坐标系中,根据这个规律,探究可得点的坐标是(
2、 )ABCD二、填空题9计算:1_10若点A(1m,1n)与点B(3,2)关于y轴对称,则(mn)2020的值是_11已知点A(3a+5,a3)在二、四象限的角平分线上,则a=_12如图,直线 a/b,若1 = 40,则2 的度数是_.13如图,有一条直的宽纸带,按图折叠,则的度数等于_14材料:一般地,n个相同因数a相乘:记为如,此时3叫做以2为底的8的对数,记为(即)那么_,_15点关于轴的对称点的坐标是_16如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为_三、解答题17计算题(1). (2);18求下列各式中的值(1)(2)19如图,已知12,BC,可推得ABCD
3、理由如下:12(已知),且lCGD( )2CGDCEBF( ) BFD( )又BC(已知) ,ABCD( )20在下图的直角坐标系中,将平移后得到,它们的各顶点坐标如下表所示:(1)观察表中各对应点坐标的变化,并填空:向_平移_个单位长度,再向_平移_个单位长度可以得到;(2)在坐标系中画出及平移后的;(3)求出的面积21阅读下面的文字,解答问题 大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,但是由于12,所以的整数部分为1,将减去其整数部分1,差就是小数部分为(1)解答下列问题: (1)的整数部分是 ,小数部分是 ;(2)如果的小数部分为a,的整数部分为b,
4、求a+b的值;(3)已知12+=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,
5、求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数24已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为AC上一点,请写出与之间的等量关系,并说明理由(3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论25【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40
6、,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)26如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间【参考答案
7、】一、选择题1C解析:C【分析】根据两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角进行分析即可【详解】解:根据同位角的定义可知:图中,1和2是同位角;图中,1和2不是同位角;故选C【点睛】本题主要考查同位角的定义,熟记同位角的定义是解决此题的关键2C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平
8、移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键3B【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答【详解】解:A、(3,0)在x轴上,不合题意;B、(2,-5)在第四象限,符合题意;C、(-5,-2)在第三象限,不合题意;D、(-2,3),在第二象限,不合题意故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可【详解】解:对顶角相等,是真命题;在同一平
9、面内,垂直于同一条直线的两条直线平行,是真命题;相等的角不一定是对顶角,原命题是假命题;两直线平行,内错角相等,原命题是假命题故选:B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小5A【分析】分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成【详解】分别过A、B作直线AD、BC,如图所示,则ADBCBCCBF=2ADEAD=1=15DAB=EAB-EAD=125-15=110ADBCDAB+ABC=180ABC=180-DAB=180-110=70 CBF=ABF-ABC=85-70=152=15故选:A【点睛】本题考查了平行线的性质与判
10、定等知识,关键是作两条平行线6B【分析】把,再利用立方根的性质化简即可得到答案.【详解】解: , 故选:【点睛】本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.7C【分析】利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小【详解】解:,故选:【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想8B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,进而求解即可【详解】解:观察图形可知,点的横坐标依次为1、
11、2、3、解析:B【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,进而求解即可【详解】解:观察图形可知,点的横坐标依次为1、2、3、4、n,纵坐标依次为2、0、2、0、四个一循环,且20214=5051,点的坐标是(2021,2),故选:B【点睛】本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键二、填空题91【分析】先计算算术平方根,然后计算减法【详解】解:原式=2-1=1故答案是:1【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x解析:1【分析】先计算算术平方根,然后计算减
12、法【详解】解:原式=2-1=1故答案是:1【点睛】本题考查了算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根101【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,m=2,n=-1,(mn)2020=(2-1)2020=1;故答案为:1【点睛】
13、此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键11【详解】点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.解析:【详解】点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.12140【详解】解:ab,1=40,3=1=40,2=180-3=180-40=140故答案为:140解析:140【详解】解:ab,1=40,3=1=40,2=180-3=180-40=140故答案为:1401375【
14、分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为解析:75【分析】由图形可得ADBC,可得CBF=30,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案【详解】解:ADBC,CBF=DEF=30,AB为折痕,2+CBF=180,即2+30=180,解得=75故答案为:75【点睛】本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键143; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意
15、可知:,则,故答案为:3;【点睛】本题主解析:3; 【分析】由可求出,由,可分别求出,继而可计算出结果【详解】解:(1)由题意可知:,则,(2)由题意可知:,则,故答案为:3;【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键15【分析】根据点关于轴的对称点的坐标的特征,即可写出答案【详解】解:点关于轴的对称点为,点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:解析:【分析】根据点关于轴的对称点的坐标的特征,即可写出答案【详解】解:点关于轴的对称点为,点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:【点睛
16、】本题考查了与直角坐标系相关的知识,理解点关于轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键16【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键解析:【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键三、解答题17(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;
17、(2)原式=.解析:(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.18(1);(2)【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答【详解】解:(1),(2)【点睛】本题考查平方根、立方根,解析:(1);(2)【分析】(1)根据平方根的性质,直接开方,即可解答;(2)根据立方根,直接开立方,即可解答【详解】解:(1),(2)【点睛
18、】本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质19见解析【分析】首先确定1=CGD是对顶角,利用等量代换,求得2=CGD,则可根据:同位角相等,两直线平行,证得:CEBF,又由两直线平行,同位角相等,证得角相等,易得:BFD=B,解析:见解析【分析】首先确定1=CGD是对顶角,利用等量代换,求得2=CGD,则可根据:同位角相等,两直线平行,证得:CEBF,又由两直线平行,同位角相等,证得角相等,易得:BFD=B,则利用内错角相等,两直线平行,即可证得:ABCD【详解】解:1=2(已知),且1=CGD(对顶角相等),2=CGD(等量代换),CEBF(同位角相等,两直线平行
19、),C=BFD(两直线平行,同位角相等),又B=C(已知),BFD=B(等量代换),ABCD(内错角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质注意数形结合思想的应用是解答此题的关键20(1)上,2,右,4;(2)见解析;(3)7.5【分析】(1)利用根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b),即可得出A,B向上平移2个单位长度,再解析:(1)上,2,右,4;(2)见解析;(3)7.5【分析】(1)利用根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b),即可得出A,B向上平移2个单位长度,再向右平移4 个单位长度
20、,即可得出图形(2)根据(1)中图象变化,得出ABC;(3)利用SABC=SABC=AByc得出即可【详解】解:(1)根据A,B两点的坐标变化:A(a,0),A(4,2);B(3,0),B(7,b);ABC向上平移2个单位长度,再向右平移4个单位长度可以得到ABC;(2)如图所示:(3)SABC=SABC=AByc=35=7.5【点睛】此题主要考查了图形的平移变换的性质与作法以及三角形面积求法,根据A,B两点坐标变化得出图象平移变化位置是解题关键21(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数
21、部分y,即可求解【详解】解:(1)解析:(1)3,3;(2)1;(3)14【分析】(1)根据的大小,即可求解;(2)分别求得a、b,即可求得代数式的值;(3)求得12+的整数部分x,小数部分y,即可求解【详解】解:(1)的整数部分是3,小数部分是3;(2)23,34a=2,b=3a+b=2+3=1;(3)12,1312+14,x=13,y=1xy=13(1)=14xy的相反数是14【点睛】此题主要考查了无理数大小的估算,正确确定无理数的整数部分和小数部分是解题的关键二十二、解答题22(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,
22、理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cma2=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的长宽之比为3:2设长方形纸片的长为3xcm,则宽为2xcm6x 2=300x 2
23、=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等
24、),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的
25、性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系24(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF解析:(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF【分析】(1)如图1,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后利用ACP+BCP90即可求得答案;(2)如图2,作CPa,则CPab,根据平行线的性质可得AOGACP
26、,BCP+CEF180,然后结合已知条件可得BCPNEF,然后利用ACP+BCP90即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PNOG,则NPOGEF,根据平行线的性质可推出OPQGOP+PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可【详解】解:(1)如图1,作CPa,CPab,AOGACP,BCP+CEF180,BCP180CEF,ACP+BCP90,AOG+180CEF90,AOG46,CEF136,故答案为136;(2)AOG+NEF90理由如下:如图2,作CPa,则CPab,AOGACP,BCP+CEF180,而
27、NEF+CEF180,BCPNEF,ACP+BCP90,AOG+NEF90;(3)如图3,当点P在GF上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPQGOP+PQF,OPQ140POQ+PQF;如图4,当点P在线段GF的延长线上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPNOPQ+QPN,GOPOPQ+PQF,140POQOPQ+PQF【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键25DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过
28、P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -D
29、FCE,PDF=1= DPC=1-ACE=1-DPC= - 26(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm
30、,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如
31、图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD3
32、51045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键