1、一、解答题1如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、.(1)若在轴上存在点,连接,使SABM =SABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=SPCD+SPOB的取值范围;(3)若在直线上运动,请直接写出的数量关系.2已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3)如图4中,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数3已
2、知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系4如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围5已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量
3、关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数6已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 7定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”将一个“奇异数”的个位数
4、字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以根据以上定义,完成下列问题:(1)填空:下列两位数:,中,“奇异数”有 .计算: . .(2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数”(3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值8规律探究,观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:请回答下列问题:(1)按以上规律写出第5个等式:= _ = _ (2)用含n的式子表示第n个等式:= _ = _(n为
5、正整数)(3)求9对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则例如:,(1)计算: ; ;(2)求满足的实数的取值范围,求满足的所有非负实数的值;(3)若关于的方程有正整数解,求非负实数的取值范围10如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形由此得到了一种能在数轴上画出无理数对应点的方法(1)图2中A、B两点表示的数分别为_,_; (2)请你参照上面的方法:把图3中的长方形进行剪裁,并拼成一个大正方形在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长_(注:小正方形
6、边长都为1,拼接不重叠也无空隙) 在的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及(图中标出必要线段的长)11阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:,即,的整数部分为2,小数部分为。请解答(1)的整数部分是_,小数部分是_。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部分,y是其小数部分,直接写出的值.12对非负实数“四舍五入”到各位的值记为.即:当为非负整数
7、时,如果,则;反之,当为非负整数时,如果,则例如:,(1)计算: ; ;(2)求满足的实数的取值范围,求满足的所有非负实数的值;(3)若关于的方程有正整数解,求非负实数的取值范围13已知,在平面直角坐标系中,ABx轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C(1)则a,b,点C坐标为;(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作BOGAOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值 14如图1,/,点、分别在、上,点在直线、
8、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值15已知A(0,a)、B(b,0),且+(b4)20(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足SABC15如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;如图2,若点F(m,10)满足SACF10,求m(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB8,GD6当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最
9、大值16若关于x的方程ax+b0(a0)的解与关于y的方程cy+d0(c0)的解满足1xy1,则称方程ax+b0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)若关于x的方程3x3+4(x1)0与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值17在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求
10、点的坐标; (2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示BCD的面积),求点、的坐标; (3)在(2)的条件下,在轴上是否存在一点,使表示PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.18如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2)(1)直接写出点E的坐标 ;D的坐标 (3)点P是线段CE上一动点,设CBP=x,PAD=y,BPA=z,确定x, y,z之间的数量关系,并证明你的结论19已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2
11、辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元次,B型车每辆需租金240元次,请选出最省钱的租车方案,并求出最少租车费20如图,是的平分线,和的度数满足方程组,(1)求和的度数;(2)求证:.(3)求的度数.21已知AMCN,点B为平面内一点,ABBC于B(1)如图1,过点B作BDAM于点D,BAD与C有何数量关系,并说明理由;(2)如图2,在(
12、1)问的条件下,点E,F在DM上,连接BE,BF,CF,若BF平分DBC,BE平分ABD,FCB+NCF180,BFC5DBE,求ABE的度数22学校计划为“我和我的祖国”演讲比赛购买奖品已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由23一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”(1)请判断
13、7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值24小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元”李老师算了一下,说:“你肯定搞错了”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?25如图,正方形ABCD的边长是2厘米,
14、E为CD的中点,Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿运动,最终到达点D,若点Q运动时间为秒(1)当时, 平方厘米;当时, 平方厘米;(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求的取值范围;(3)若的面积为平方厘米,直接写出值26阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因为解得因为t为整数,所以t=0或-1所以该方程的正整数解为和 (1)
15、方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案27阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值28在平面直角坐标系xOy中点A,B,P不在同一条直线上对于点P和线段AB给出如下定义:过点
16、P向线段AB所在直线作垂线,若垂足Q落在线段AB上,则称点P为线段AB的内垂点若垂足Q满足|AQ-BQ|最小,则称点P为线段AB的最佳内垂点已知点A(2,1),B(1,1),C(4,3)(1)在点P1(2,3)、P2(5,0)、P3(1,2),P4(,4)中,线段AB的内垂点为 ;(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为 ;(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是 ;(4)已知点D(m,0),E(m+4,0),F(2m,3)若线段CF上存在线段DE的最佳内垂点,求m的取值范围29定义:如果一个两位数a的十位数字为m,个位数字为n,且、,
17、那么这个两位数叫做“互异数”将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以根据以上定义,解答下列问题:(1)填空:下列两位数:20,21,22中,“互异数”为_;计算:_;_;(m、n分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c的十位数字是,个位数字是,且,请求出“互异数”b和c;(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字
18、是3,且满足,请直接写出满足条件的所有x的值_;(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围_30如图,在平面直角坐标系中,已知,满足平移线段得到线段,使点与点对应,点与点对应,连接,(1)求,的值,并直接写出点的坐标;(2)点在射线(不与点,重合)上,连接,若三角形的面积是三角形的面积的2倍,求点的坐标;设,求,满足的关系式【参考答案】*试卷处理标记,请不要删除一、解答题1(1)(0,4)或(0,-4);(2);(3)答案见解析【解析】(1)先根据SABM =SABDC,得出ABM的高为4,再根据三角形面积公式得到M点的坐标;(2)先计算出
19、S梯形OBDC=5,再讨论:当点P运动到点B时,SPOC的最小值=2,当点P运动到点D时,SPOC的最大值=3,即可判断S=SPCD+SPOB的取值范围的取值范围;(3)分类讨论:当点P在BD上,如图1,作PECD,根据平行线的性质得CDPEAB,则DCP=EPC,BOP=EPO,易得DCP+BOP=EPC+EPO=CPO;当点P在线段BD的延长线上时,如图2,同样有DCP=EPC,BOP=EPO,由于EPO-EPC=BOP-DCP,于是BOP-DCP=CPO;同理可得当点P在线段DB的延长线上时,DCP-BOP=CPO解:(1)由题意,得C(0,2)ABDC的高为2若SABM =SABDC,
20、则ABM的高为4又点M是y轴上一点点M的坐标为(0,4)或(0,-4)(2)B(-2,0),O(0,0)OB=2由题意,得C(0,2),D(-3,2)OC=2,CD=3S梯形OBDC=点在线段上运动,当点运动到端点B时,PCO的面积最小,为当点运动到端点D时,PCO的面积最大,为S=SPCD+SPOB= S梯形OBDCSPCO=5SPCOS的最大值为52=3,最小值为53=2故S的取值范围是:(3)如图:当点在线段上运动时,当点在射线上运动时,当点在射线上运动时,点睛:本题主要考查坐标与图形的性质及三角形的面积.利用分类讨论思想,并构造辅助线利用平行线的性质推理是解题的关键.2(1)BMEME
21、NEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN
22、,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEN
23、D)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键3(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和
24、的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质4(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质
25、,熟记平行线的性质及作出合理的辅助线是解题的关键5(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ
26、=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用6(1)PBQC;(2
27、)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3
28、t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题7(1),;(2);(3)【分析】(1)由“奇异数”的定义可得;
29、根据定义计算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根据题意可列出等式,可求出x、y的值,即可求的值.【详解】解:(1)对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”“奇异数”为21;f(15)=(15+51)11=6,f(10m+n)=(10m+n+10n+m)11=m+n;(2)f(10m+n)=m+n,且f(b)=8k+2k-1=8k=3b=103+23-1=35;(3)根据题意有 x、y为正数,且xyx=6,y=5a=610+5=65故答案为:(1),;(2);(3)【点睛】本题考查了新定义下的实数运算,能
30、理解“奇异数”定义是本题的关键8(1);(2);(3).【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为则第5个式子为:故应填:;(2)第1个等式的分母为:第2个等式的分母为:第3个等式的分母为:第4个等式的分母为:归纳类推得,第n个等式的分母为:则第n个等式为:(n为正整数)故应填:;(3)由(2)的结论得:则.【点睛】本题考查了有理数运算的规律类问题,依据
31、已知等式归纳总结出等式的一般规律是解题关键.9(1)2,3 (2) (3)【分析】(1)根据新定义的运算规则进行计算即可;(2)根据新定义的运算规则即可求出实数的取值范围;根据新定义的运算规则和为整数,即可求出所有非负实数的值;(3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围【详解】(1)2;3;(2)解得;解得为整数故所有非负实数的值有;(3)方程的解为正整数或2当时,是方程的增根,舍去当时,【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键10(1),;(2)图见解析,;见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点
32、B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N【详解】(1)由图1知,小正方形的对角线长是,图2中点A表示的数是,点B表示的数是,故答案是:,;(2)长方形的面积是5,拼成的正方形的面积也应该是5,正方形的边长是,如图所示:故答案是:;如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解11(1)3;3; (2)4;(3)xy=7【分析】(1)由34可得答案;
33、(2)由23知a=2,由67知b=6,据此求解可得;(3)由23知53+6,据此得出x、y的值代入计算可得【详解】(1)34,的整数部分是3,小数部分是3;故答案为3;3(2)23,a=2,67,b=6,a+b=2+6=4(3)23,53+6,3+的整数部分为x=5,小数部分为y=3+5=2则xy=5(2)=5+2=7【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小12(1)2,3 (2) (3)【分析】(1)根据新定义的运算规则进行计算即可;(2)根据新定义的运算规则即可求出实数的取值范围;根据新定义的运算规则和为整数,即可求出所有非负实数的值;(3)先解方程求得,再
34、根据方程的解是正整数解,即可求出非负实数的取值范围【详解】(1)2;3;(2)解得;解得为整数故所有非负实数的值有;(3)方程的解为正整数或2当时,是方程的增根,舍去当时,【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键13(1);(2);(3)不变,值为2【分析】(1)根据,即可得出a,b的值,再根据平移的性质得出,因为点C在y轴负半轴,即可得出点C的坐标;(2)过点D分别作DMx轴于点M, DNy轴于点N,连接OD,在中用等面积法即可求出m和n的关系式;(3)分别过点E,F作EPOA, FQOA分别交y轴于点P,点Q,根据平行线的性质,得出 进而得到的值【详解】(1
35、)解:, 且C在y轴负半轴上,,故填:;(2)如图1,过点D分别作DMx轴于点M, DNy轴于点N,连接OD AB x轴于点B,且点A,D,C三点的坐标分别为: ,,又SBOC = SBODSCOD=OBMDOCND ,;(3)解:的值不变,值为2理由如下:如图所示,分别过点E,F作EPOA, FQOA分别交y轴于点P,点Q,线段OC是由线段AB平移得到,BCOA,又EPOA,EPBC,GCF=PEC,EPOA,AOE=OEP,OEC=OEP+PEC=AOE+GCF,同理:OFC=AOF+GCF,又AOB=BOG,OFC=2AOE+GCF,【点睛】本题主要考查了非负数的性质,坐标与图形,平行线
36、的判定与性质,以及平移的性质,解决问题的关键是作辅助线,运用等面积法,角的和差关系以及平行线的性质进行求解14(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:
37、过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键15(1)A(0,5),B(4,0);(2)E(0,);2或6;(3)24【分析】(1)根据二次根式和偶次幂的非负性得出a,b解答即可;(2)根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;延长CA交直线l于点H(
38、a,10),过点H作HMx轴于点M,根据三角形面积公式解答即可;(3)平移GH到DM,连接HM,根据三角形面积公式解答即可【详解】解:(1),且,(b4)20,a50,b40,解得:a5,b4,A(0,5),B(4,0);(2)连接BE,如图1,BC6,C(2,0),ABCE,SABCSABE,AE,OE,E(0,);F(m,10),点F在过点G(0,10)且平行于x轴的直线l上,延长CA交直线l于点H(a,10),过点H作HMx轴于点M,则M(a,0),如图2,SHCMSACO+S梯形AOMH,解得:a2,H(2,10),SAFCSCFHSAFH,FH4,H(2,10),F(2,10)或(6
39、,10),m2或6;(3)平移GH到DM,连接HM,则GDHM,GDHM,如图3,四边形BDHG的面积BHM的面积,当BHHM时,BHM的面积最大,其最大值【点睛】本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键16(1)是;(2)k的最小值为,最大值为【分析】(1)分别解出两个方程,得到xy的值,即可确定两个方程是“友好方程”;(2)分别解两个方程为x1,再由已知可得11,求出k的取值范围为即可求解【详解】解:(1)由2x95x2,解得x,由5(y1)2(1y)342y,解得y3,xy,1xy1,方程2x95x2与方程5(y1)2(1y)342y是“友好方程”;(2)由3x3+4(x1)0,解得x1,由,解得,两个方程是“友好方程”,1xy1,11,k的最小值为,最大值为【点睛】本题主要考查了解一元一次方程和解一元一次不等式组,解题的关键在于能够熟练掌握相关知识进行求解.17(1);(2);(3)存在点,其坐标为或.【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据SBCD=7(SBCD建立方程求解,即可);(3)设出点P的坐标,表示出PC用,建立方程求解即可【详解】(1)B(3,0)平移后的对应点,设,即线段向左平移5个单位,再向上平移4个单位得到线段点平移后的对应点;(2)