资源描述
六年级人教版上册数学计算题附答案
1.直接写出得数。
2.直接写出得数。
① ②
③ ④
⑤ ⑥
⑦ ⑧155cm∶1m(化成最简单的整数比)
3.直接写得数。
4.直接写出得数。
5.直接写出得数。
6.直接写得数。
10-5.2= 35×2%= 12.5×24=
2÷7= 1-1÷4=
7.直接写得数。
430+280= 540-320= 243+126= 637-268=
23×30= 8×25= 720-90= 390-13=
5.6+2.4= 8-4.9= 2.6×0.3= 0.56÷0.8=
+= += 1-= -=
×1.2= ×= 24÷= ÷=
8.直接写得数。
1.2+3.9= 2.5×3= 0.36÷0.6= 803-204≈
20×498≈
9.直接写出得数。
10.直接写得数。
0.5×0.3= 0.08×6= 0.46+0.34= 1.5÷0.05=
6.8÷10%= 0.3÷6= = 301-199= 0.24×300=
11.直接写得数。
∶
12.直接写得数。
19+24= 5-1.6= 3.8÷2= 1.5×4=
70-18= 0.25÷0.1= 3.5+0.7= 0.4×0.2=
5÷1000= 1-= ×= ÷=
13.直接写出得数。
14.口算。
15.直接写出得数。
415+485= ×22= 0.015÷1.5= 5.5×1.25×8= 100%×1%=
÷= (+)×4= a2+a×a= 2.5×0.4÷2.5×0.4= 2.8×9.9+0.28=
16.下面各题怎样简便就怎样算。
17.能简算的要简算。
[1-(+)]÷ (+)×11+
1.68×13.5-1.68×3.5 29.4÷2.8×(3.5-2.3)
18.用你喜欢的方法计算。
(1) (2)
(3) (4)
19.下面各题,怎样简便怎样算。
2.5×9×4 36×(+) 42×[169-(78+35)]
20.用你喜欢的方法计算下面各题。
(1)4.36×250%+2.5×3.64+5 (2)9×÷(9÷)
(3) (4)
21.脱式计算。(能简算要简算)
(1) (2)2.5×1.25×4×0.8
(3) (4)
22.计算下面各题,能简算的要简算
125×8÷125×8 (1.6+1.6+1.6+1.6)×25
3.6×18-0.8×36
23.计算下面各题,能简算的要简算(写出主要简算过程)。
12.5×8+75×0.8 4.72-1.16-2.84
(+-)÷
24.计算下面各题,能简算的要简算。
25.用合理的方法计算,并写出过程。
836-192÷8×16 1.4÷(1.4+0.7) 0.8×0.4×12.5×0.25
÷6+÷20 14×19×(+) ÷[(+)÷]
26.简便计算。
27.脱式计算。
28.计算下面各题,能简算的要简算。
29.能简算的要简算。
30.计算下面各题,能简算的要简算。
(1) (2) (3)
(4) (5) (6)
31.解方程。
-= 0.7(+0.9)=42 2(3-4)+(4-)=3
32.解方程。
① ②
33.解方程。
x-20%x=440
34.解方程。
(1) (2) (3)
35.解方程。
(1) (2) (3)
36.解方程。
(1)x-15%x=18 (2)(x-1.5)×=6 (3)40%x-=
37.解方程。
38.解方程。
39.解方程。
40.解方程。
41.解方程。
42.解方程。
x-20%x=9.6
43.解方程。
44.解方程。
45.解方程。
46.求下图阴影部分的面积(单位:厘米)。
47.求下图中阴影部分的面积。
48.求如图中阴影部分的面积。
49.求阴影部分的面积。
50.求如图中阴影部分的面积。
51.求阴影部分的面积。(单位:厘米)
52.计算下图的周长和面积(单位:m)
53.计算下图的面积(单位:dm)。
54.下图长方形的周长是30厘米,求阴影部分的面积。
55.如图,求下面图形中阴影部分的面积。
56.计算阴影部分的面积(单位:厘米)。
57.计算下面左边图形阴部分的周长和右面图形阴影部分的面积。
58.求阴影的面积。(单位:厘米)
59.计算图中阴影部分的面积。
60.计算下图阴影部分的面积。
【参考答案】
1.9;;0;;
22;21;;;
;;;
【解析】
2.①;②
③0.03;④1.5
⑤0.24;⑥33
⑦;⑧31∶20
【解析】
3.;;6.6;;
10;;0.54;3.6
【解析】
6.6
10 0.54 3.6
4.78;3;1;0;
11;180;0.3;1
【解析】
5.;1.3;15;5.5;
;18;68;
【解析】
6.8;;0.7;300;4;
0.81;600;18x2;;
【解析】
7.710;220;369;369;
690;200;630;377;
8;3.1;0.78;0.7;
1;;;;
;;28;
【解析】
8.1;7.5;0.6;600;
3;;2;10000
【解析】
9.115;15.01;7.2;7.8
2;6000;28.26;1
【解析】
10.15;;0.48;0.8;30
68;0.05;;102;72
【解析】
11.;1;1.8;;5
;2.1;3;7.99;
【解析】
12.43;3.4;1.9;6
52;2.5;4.2;0.08
0.005;;;4
【解析】
13.;2;;1
;5;28;1
【解析】
14.7;0.6;422;7.09;
;;;0.9
【解析】
15.900;10;0.01;55;0.01
;5;2a2;0.16;28
【解析】
16.2;;
;
【解析】
(1)根据加法交换律和结合律进行简算;
(2)小括号里面的根据减法的性质进行简算,最后算除法;
(3)根据乘法分配律进行简算;
(4)先算小括号里面的减法和加法,再算除法。
=
=
=
=
=
=
=
=
=
17.;6
16.8;12.6
【解析】
(1)先算小括号里面的加法,再算中括号里面的减法,最后算括号外面的除法;
(2)根据乘法分配律和加法结合律进行计算;
(3)根据乘法分配律进行计算;
(4)先算小括号里面的减法,再按照从左向右的顺序进行计算。
(1)[1-(+)]÷
=[1-]÷
=÷
=
(2)(+)×11+
=×11+×11+
=5++
=5+(+)
=5+1
=6
(3)1.68×13.5-1.68×3.5
=1.68×(13.5-3.5)
=1.68×10
=16.8
(4)29.4÷2.8×(3.5-2.3)
=29.4÷2.8×1.2
=10.5×1.2
=12.6
18.(1)576;(2)0
(3)20;(4)
【解析】
(1)根据运算顺序,先计算除法,再计算乘法;
(2)根据交换律和结合律把式子转化为,再进行计算;
(3)根据乘法分配律进行计算即可;
(4)把中括号里的算式根据减法的性质转化为,再进行计算。
(1)
(2)
(3)
(4)
19.90;34;2352
【解析】
(1)交换9和4的位置,利用乘法交换律简便计算;
(2)利用乘法分配律简便计算;
(3)先计算小括号里的加法,再计算中括号里的减法,最后计算中括号外的乘法。
2.5×9×4
=2.5×4×9
=10×9
=90
36×(+)
=36×+36×
=16+18
=34
42×[169-(78+35)]
=42×[169-113]
=42×56
=2352
20.(1)25;(2)1;
(3);(4)20
【解析】
(1)先把百分数化成小数,再根据乘法分配律把式子转化为2.5×(4.36+3.64)+5,进行简算即可;
(2)根据运算顺序,先计算括号里的除法和括号外的乘法,最后计算括号外的除法;
(3)根据运算顺序,先计算括号里的加法,再计算括号外的除法,最后计算括号外的加法;
(4)根据乘法分配律,把式子转化为,进行简算即可。
(1)4.36×250%+2.5×3.64+5
=4.36×2.5+2.5×3.64+5
=2.5×(4.36+3.64)+5
=2.5×8+5
=20+5
=25
(2)9×÷(9÷)
=×÷(×)
=÷
=1
(3)
=
=
=
=
(4)
=
=
=
21.(1)11;(2)10;
(3)3;(4)
【解析】
(1)根据加法交换律,把式子转化为进行简算即可;
(2)根据乘法交换律、结合律,把式子转化为2.5×4×(1.25×0.8),进行简算即可;
(3)先把中括号里的式子根据乘法交换律转化为,进行简算即可;
(4)根据减法的性质,把式子转化为,进行简算即可。
(1)
=
=10+1
=11
(2)2.5×1.25×4×0.8
=2.5×4×(1.25×0.8)
=10×1
=10
(3)
=
=
=
=3
(4)
=
=
=
22.;64;160
36;2;23
【解析】
(1)根据减法的性质a-b-c=a-(b+c)进行简算;
(2)带符号搬家,让(125÷125)、(8×8)结合起来,计算更简便;
(3)括号里面有4个1.6,所以把1.6+1.6+1.6+1.6改写成1.6×4,再根据乘法结合律(a×b)×c=a×(b×c)进行简算;
(4)利用积不变的规律,将0.8×36改写成8×3.6,再根据乘法分配律的逆运算a×c+b×c=(a+b)×c进行简算;
(5)将0.375化成,25%化成,然后根据加法交换律a+b=b+a,加法结合律(a+b)+c=a+(b+c)进行简算;
(6)根据乘法分配律(a+b)×c=a×c+b×c进行简算。
(1)
=
=
=
(2)125×8÷125×8
=(125÷125)×(8×8)
=1×64
=64
(3)(1.6+1.6+1.6+1.6)×25
=1.6×4×25
=1.6×(4×25)
=1.6×100
=160
(4)3.6×18-0.8×36
=3.6×18-8×3.6
=3.6×(18-8)
=3.6×10
=36
(5)
=
=
=1+1
=2
(6)
=
=
=34-11
=23
23.160;0.72;
12;
【解析】
(1)先根据积的变化规律,把75×0.8化为7.5×8,然后运用乘法分配律进行计算即可。
(2)运用减法的性质进行计算即可。
(3)把除以化为乘36,然后运用乘法分配律进行计算即可。
(4)先算小括号里面的减法,再算中括号里面的除法,最后算括号外面的乘法即可。
12.5×8+75×0.8
=12.5×8+7.5×8
=(12.5+7.5)×8
=20×8
=160
4.72-1.16-2.84
=4.72-(1.16+2.84)
=4.72-4
=0.72
(+-)÷
=(+-)×36
=×36+×36-×36
=6+16-10
=22-10
=12
=
=
=
24.;;
;
【解析】
(1)先计算分数除法,再计算分数加法;
(2)先计算小括号里面的加法,再计算中括号里面的减法,最后计算括号外面的除法;
(3)把3200化为(8×400),再利用乘法交换律和结合律简便计算;
(4)先把分数除法化为分数乘法,再把0.75化为,最后利用乘法分配律简便计算。
(1)
=
=
(2)
=
=
=
(3)
=
=
=
=
(4)
=
=
=
=
=
25.452;;1
;33;
【解析】
①先算除法,再算乘法,最后算减法;
②先算小括号里面的加法,再算括号外面的除法;
③根据乘法交换律和结合律进行计算;
④、⑤根据乘法分配律进行计算;
⑥先算小括号里面的加法,再算中括号里面的除法,最后算括号外面的除法。
836-192÷8×16
=836-24×16
=836-384
=452;
1.4÷(1.4+0.7)
=1.4÷2.1
=;
0.8×0.4×12.5×0.25
=(0.8×12.5)×(0.25×0.4)
=10×0.1
=1;
÷6+÷20
=×+×
=(+)×
=×
=;
14×19×(+)
=14×19×+14×19×
=19+14
=33;
÷[(+)÷]
=÷[÷]
=÷3
=
26.;21;0.237
【解析】
(1)提取相同的分数,利用乘法分配律简便计算;
(2)交换3.2和7.22的位置,利用加法交换律和加法结合律简便计算;
(3)利用除法的性质,先计算8×1.25,再计算除法。
=
=
=
=
=11+10
=21
=
=2.37÷10
=0.237
27.2;;40
【解析】
,先算乘法,再算除法;
,先算除法,再算减法;
,先算除法,再算加法。
28.12;;11
【解析】
(1)先算乘法,再算加法;
(2)按照从左到右的顺序计算;
(3)按照乘法分配律计算。
(1)
(2)
(3)
29.;10;
248;
【解析】
(1)把百分数转化成分数后,先计算小括号里的减法,再计算中括号里的乘法,最后计算中括号外的除法;
(2)利用加法交换律和减法的性质,把算式变成简便计算;
(3)把17×19看作一个整体,利用乘法分配律简便计算;
(4),,依次类推,把每一个分数转化成两个分数的差,前后两个分数相互抵消后,简便计算即可;
=
=
=
=
=
=
=
=10
=
=
=248
=
=
=
=
30.(1);(2);(3);
(4);(5)10;(6)18
【解析】
(1)从左往右依次计算;
(2)把除法化成乘法,把0.25化成,再运用乘法分配律的逆运算a×c+b×c=(a+b)×c进行简算;
(3)先算小括号里的减法,再算中括号里的乘法,最后算中括号外的除法;
(4)先算括号里的加法,再算括号外的除法;
(5)运用乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)进行简算;
(6)运用乘法分配律(a+b)×c=a×c+b×c进行简算。
(1)
(2)
(3)
(4)
(5)
(6)
31.=42;=59.1;=2
【解析】
根据等式的性质解方程。
(1)先化简方程,然后方程两边同时除以,求出方程的解;
(2)方程两边先同时除以0.7,再同时减去0.9,求出方程的解;
(3)先去括号,化简方程,然后方程两边先同时减去3,再同时加上4,最后同时除以2,求出方程的解。
(1)-=
解:=
÷=÷
=×
=42
(2)0.7(+0.9)=42
解:0.7(+0.9)÷0.7=42÷0.7
+0.9=60
+0.9-0.9=60-0.9
=59.1
(3)2(3-4)+(4-)=3
解:6-8+4-=3
5-4=3
5-4-3=3-3
2-4=0
2-4+4=0+4
2=4
2÷2=4÷2
=2
32.①;②
【解析】
①方程两边同时乘,两边再同时乘;
②先把方程左边化简为,两边再同时除以0.7。
①
解:
②
解:
33.;;
【解析】
(1)根据等式的性质,方程两边同时乘,即可求解;
(2)根据等式的性质,方程两边同时乘,即可求解;
(3)先计算方程的左边,再根据等式的性质,方程两边同时除以0.8即可求解。
(1)
解:
(2)
解:
(3)x-20%x=440
解:80%x=440
0.8x=440
0.8x÷0.8=440÷0.8
34.(1);(2);(3)
【解析】
(1)根据等式的性质2,方程两边同时乘,两边再同时除以4;
(2)根据等式的性质1和2,方程两边同时减去的积,两边再同时乘;
(3)根据等式的性质2,方程两边同时乘,两边再同时乘3。
【解答】
(1)
解:
(2)
解:
(3)
解:
35.(1);(2);(3)
【解析】
(1)利用等式的性质2,方程两边同时除以;
(2)利用等式的性质2,方程两边先同时乘,再同时除以;
(3)先化简方程左边含有字母的式子,再利用等式的性质2,方程两边同时除以。
(1)
解:
(2)
解:
(3)
解:
36.(1)x=40;(2)x=19.5;(3)x=
【解析】
(1)x-15%x=18
解:0.45x=18
x=18÷0.45
x=40
(2)(x-1.5)×=6
解:x-1.5=18
x=18+1.5
x=19.5
(3)40%x-=
解:0.4x=
x=÷0.4
x=
37.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此计算。
(1)
解:
(2)
解:
(3)
解:
38.x=3;x=;x=36
【解析】
(1)先化简方程,根据等式的性质,方程两边同时除以即可得解;
(2)先将百分数和小数化为分数,根据等式的性质,方程两边同时加上x,再减去,最后除以即可得解;
(3)先化简方程,根据等式的性质,方程两边再同时加上5,最后方程两边同时除以即可得解。
(1)x-x=
解:x=
x=÷
x=×
x=3
(2)-37.5%x=0.125
解:-x=
-x+x=+x
x=-
x=
x=÷
x=×
x=
(3)(x-6)×=25
解:x-5=25
x=30
x=30÷
x=30×
x=36
39.;x=28;
【解析】
解:
解:
x=28
解:
40.;;
【解析】
,先将左边进行合并,再根据等式的性质2解方程;
,先写成的形式,根据等式的性质1和2,两边同时-0.625,再同时÷2即可。
,根据比与除法的关系,写成,再根据等式的性质2,两边同时×即可。
解:
解:
解:
41.;;
【解析】
根据等式的性质:
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等;
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等;据此计算。
(1)
解:
(2)
解:
(3)
解:
42.x=128;x=12;x=
【解析】
①可以把看成一个整体,应用等式的性质1,方程左右两边同时减去6,再应用等式性质2,方程左右两边同时除以,得到方程的解;
②逆用乘法分配律,百分数化为小数,将方程整理成0.8x=9.6,最后应用等式的性质2,方程左右两边同时除以0.8,得到方程的解;
③含有未知数的项作为减数,可应用减法中各部分的关系,将方程整理成,最后应用等式的性质2,将方程左右两边同时除以,得到方程的解。
解:
x-20%x=9.6
解:(1-0.2)x=9.6
0.8x=9.6
x=9.6÷0.8
x=12
解:
43.x=;x=;x=3.5
【解析】
等式的性质:等式的左右两边同时乘或除以同一个不为0的数,等式左右两边仍然相等;都含有未知数的式子,可利用乘法分配律进行化简,把百分数化成小数,再解方程即可。
解:
解:
解:
44.;;
【解析】
(1)先两边同时乘,再两边同时除以;
(2)先将12.5%化成分数,左边化简后,两边同时除以;
(3)先两边同时减去,再两边同时除以0.5。
(1)
解:
(2)
解:
(3)
解:
45.;;
【解析】
,根据等式的性质2,两边同时×即可;
,根据等式的性质1和2,两边先同时-1.5,再同时÷0.2即可;
,先将左边进行合并,再根据等式的性质2解方程。
解:
解:
解:
46.8平方厘米
【解析】
如图所示,①和②面积相等,则阴影部分是一个等腰直角三角形,利用“三角形的面积=底×高÷2”求出阴影部分的面积。
4×4÷2
=16÷2
=8(平方厘米)
所以,阴影部分面积是8平方厘米。
47.5cm2
【解析】
如图所示,①和②的面积相等,则阴影部分是一个梯形,梯形的面积=(上底+下底)×高÷2,把题中数据代入公式计算即可。
(6-3+6)×3÷2
=9×3÷2
=27÷2
=13.5(cm2)
所以,阴影部分的面积是13.5cm2。
48.88cm2
【解析】
阴影部分的面积=梯形面积-半圆面积,根据梯形面积S=(a+b)h÷2,半圆面积S=πr2÷2,分别代入数据计算即可。
梯形的面积:
(4×2+16)×4÷2
=(8+16)×4÷2
=24×4÷2
=96÷2
=48(cm2)
半圆的面积:
3.14×42÷2
=3.14×16÷2
=50.24÷2
=25.12(cm2)
阴影部分的面积:
48-25.12=22.88(cm2)
49.86cm2
【解析】
四个扇形拼成一个圆,所以阴影部分的面积等于正方形的面积减去圆的面积,根据圆的面积公式:,正方形的面积公式:,把数据代入公式解答。
(cm)
(cm2)
所以阴影部分的面积是86cm2。
50.48平方厘米
【解析】
观察图形可得:阴影部分的面积长方形面积半圆的面积,长方形的长是12厘米,宽是厘米,圆的直径是12厘米,然后再根据长方形的面积公式,圆的面积公式进行解答。
12×(12÷2)-3.14×(12÷2)2÷2
=12×6-3.14×36÷2
=72-3.14×18
=72-56.52
=15.48(平方厘米)
51.30平方厘米
【解析】
观察图形可知,左边阴影部分可以移到长方形中,然后用长方形的面积减去底为6厘米,高为6厘米的三角形的面积即可。
如图:
8×6-6×6÷2
=48-36÷2
=48-18
=30(平方厘米)
52.C
解析:8m;1314m2
【解析】
组合图形的周长等于一个圆的周长加上长方形的两条长,利用圆的周长公式:C=,再加2个50m即可得解;组合图形的面积等于一个圆的面积加上长方形的面积,利用圆的面积公式:S=和长方形的面积公式:S=ab,分别计算出圆的面积和长方形的面积,再把两个图形的面积相加即可得解。
3.14×20+50×2
=62.8+100
=162.8(m)
3.14×(20÷2)2+50×20
=3.14×102+1000
=3.14×100+1000
=314+1000
=1314(m2)
53.12dm2
【解析】
由图可知这个组合图形是由等腰三角形和半圆组成,底、高和圆的直径都是4dm,根据三角形的面积=底×高÷2,半圆的面积=,代入数据,求出等腰三角形和半圆的面积,两个图形的面积相加即是这个组合图形的面积。
(4×4)÷2
=16÷2
=8(dm2)
4÷2=2(dm)
3.14×22÷2
=3.14×4÷2
=12.56÷2
=6.28(dm2)
6.28+8=14.28(dm2)
54.61平方厘米
【解析】
长方形的宽等于圆的直径,长方形的长等于圆的直径加上圆的半径,根据长方形的周长公式可知:(长+宽)×2=30,相当于(3r+2r)×2=30,所以可计算出圆的半径。再利用长方形的面积公式:S=ab计算出长方形的面积,利用圆的面积公式:S=计算出1个圆加半个圆的面积,用长方形的面积减去1个半圆的面积,即是阴影部分的面积。
半径:(厘米)
长方形面积:
=9×6
=54(平方厘米)
圆面积:
=3.14×9+3.14×9÷2
=28.26+14.13
=42.39(平方厘米)
阴影部分面积:(平方厘米)
55.5平方米
【解析】
由图可知,小圆的直径为大圆的半径,阴影部分的面积=大半圆的面积-空白部分小圆的面积,据此解答。
3.14×(20÷2)2÷2-3.14×(20÷2÷2)2
=3.14×102÷2-3.14×52
=3.14×100÷2-3.14×25
=3.14×(100÷2-25)
=3.14×(50-25)
=3.14×25
=78.5(平方米)
56.343平方厘米
【解析】
阴影部分的面积=长方形面积-半圆面积,长方形面积=长×宽,圆的面积=πr2。
25×20-3.14×(20÷2)2÷2
=500-3.14×100÷2
=500-157
=343(平方厘米)
57.C
解析:4cm;30.96cm2
【解析】
左图周长=直径是12cm的圆的一半+直径是8cm的圆的一半+(12-8)cm,其中圆的周长C=πd,代入数据计算即可。
右图阴影部分面积=边长是(2×6)cm正方形的面积-半径是6cm圆的面积,其中圆的面积S=πr2代入数据计算即可。
3.14×12÷2+3.14×8÷2+(12-8)
=18.84+12.56+4
=35.4(cm);
(6×2)×(6 ×2)-3.14×62
=12×12-113.04
=144-113.04
=30.96(cm2)
58.5平方厘米
【解析】
如图所示,根据圆的特征,①、②部分的面积完全相等,求阴影部分的面积就是求②、③部分的面积和,而②、③部分组合成一个上底为5厘米、下底为8厘米、高为5厘米的梯形。阴影部分面积等于梯形面积。
(5+8)×5÷2
=13×5÷2
=65÷2
=32.5(平方厘米)
59.75cm2;7.125平方厘米
【解析】
第一幅图,两个扇形可以拼成一个半圆,阴影部分的面积=长方形面积-半圆面积;
第二幅图,阴影部分的面积=圆的面积-正方形面积,其中正方形面积可以用对角线的平方÷2进行计算。
5×2×5-3.14×5²÷2
=50-39.25
=10.75(平方厘米)
3.14×(5÷2)²-5×5÷2
=3.14×6.25-12.5
=19.625-12.5
=7.125(平方厘米)
60.76cm2
【解析】
阴影部分的面积=梯形面积-扇形的面积,扇形的面积是半径为8厘米的圆的面积的四分之一,据此解答即可。
(8+12)×8÷2-
=80-50.24
=29.76(cm2)
展开阅读全文