资源描述
人教版七年级数学下册 期末试卷培优测试卷
一、选择题
1.如图所示,与是一对( )
A.同位角 B.内错角 C.同旁内角 D.对顶角
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.有下列命题,①的算术平方根是2;②一个角的邻补角一定大于这个角;③在同一平面内,垂直于同一条直线的两直线平行;④平行于同一条直线的两条直线互相平行.其中假命题有( )
A.①② B.①③ C.②④ D.③④
5.如图,,的角平分线的反向延长线和是角平分线交于点,,则等于( )
A.42° B.44° C.72° D.76°
6.下列结论正确的是( )
A.的平方根是 B.没有立方根
C.立方根等于本身的数是0 D.
7.如图,将直尺与含45°角的三角尺叠放在一起,其两边与直尺相交,若∠1=25°,则∠2的度数为( )
A.120° B.135° C.150° D.160°
8.如图,点,点,点,点,…,按照这样的规律下去,点的坐标为( )
A. B. C. D.
二、填空题
9.若=x,则x的值为______.
10.若点与关于轴对称,则____________________________.
11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则
∠AOE=_____.
12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个.
13.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为 ___.
14.已知M是满足不等式的所有整数的和,N是满足不等式x≤的最大整数,则M+N的平方根为________.
15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 ____________
16.如图,点,,,,,……根据这个规律,探究可得点的坐标是________.
三、解答题
17.计算:
(1)
(2)
18.求下列各式中的值:
(1);
(2).
19.完成下列证明过程,并在括号内填上依据.
如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.
证明:∵∠1=∠2(已知),∠1=∠4
∴∠2= (等量代换),
∴ ∥BF( ),
∴∠3=∠ ( ).
又∵∠B=∠C(已知),
∴∠3=∠B
∴AB∥CD( ).
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而<2,于是可用来表示的小数部分.请解答下列问题:
(1)的整数部分是_______,小数部分是_________;
(2)如果的小数部分为的整数部分为求的值.
二十二、解答题
22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
二十三、解答题
23.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.
(1)如图1,若∠OPQ=82°,求∠OPA的度数;
(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.
24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
25.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.
(1)若DE//AB,则∠EAC= ;
(2)如图1,过AC上一点O作OG⊥AC,分别交AB、AD、AE于点G、H、F.
①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;
②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.
26.已知在中,,点在上,边在上,在中,边在直线上,;
(1)如图1,求的度数;
(2)如图2,将沿射线的方向平移,当点在上时,求度数;
(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据“同位角、内错角、同旁内角”的意义进行判断即可.
【详解】
解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,
故选:B.
【点睛】
本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.
2.C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是
解析:C
【分析】
根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.
【详解】
解:观察图形可知图案C通过平移后可以得到.
故选:C.
【点睛】
本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点(3,-2)所在象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据算术平方根的定义,邻补角的定义,平行线的判定逐一分析判断即可.
【详解】
①,的算术平方根是,①是假命题;
②大于的角的的邻补角小于这个角,②是假命题;
③在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
④平行于同一条直线的两条直线互相平行,正确,是真命题.
所以假命题有①②.
故选A.
【点睛】
本题考查了算术平方根的定义,邻补角的定义,平行线的判定等知识,掌握以上知识是解题的关键.
5.B
【分析】
过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E-∠F=48°,即可得到∠E的度数.
【详解】
解:如图,过F作FH∥AB,
∵AB∥CD,
∴FH∥AB∥CD,
∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,
∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,
∴∠ECF=180°-β,∠BFC=∠BFH-∠CFH=α-β,
∴四边形BFCE中,∠E+∠BFC=360°-α-(180°-β)=180°-(α-β)=180°-∠BFC,
即∠E+2∠BFC=180°,①
又∵∠E-∠BFC=48°,
∴∠E =∠BFC+48°,②
∴由①②可得,∠BFC+48°+2∠BFC=180°,
解得∠BFC=44°,
故选:B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
6.D
【分析】
根据平方根与立方根的性质逐项判断即可得.
【详解】
A、,8的平方根是,此项错误;
B、,此项错误;
C、立方根等于本身的数有,此项错误;
D、,
,此项正确;
故选:D.
【点睛】
本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.
7.D
【分析】
如图,利用三角形的外角的性质求出∠3,再利用平行线的性质可得结论.
【详解】
解:如图,
∵∠4=45°,∠1=25°,∠4=∠1+∠3,
∴∠3=45°-25°=20°,
∵a∥b,
∴∠2+∠3=180°,
∴∠2=180°-20°=160°,
故选:D.
【点睛】
本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题.
8.B
【分析】
观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,10
解析:B
【分析】
观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,1010).
【详解】
∵
∴
故选B.
【点睛】
本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.
二、填空题
9.0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根
解析:0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根为1.
故答案是:0或1.
【点睛】
考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.
10.0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点
解析:0
【分析】
根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.
【详解】
∵点与关于轴对称
∴
∴,
故答案为:0.
【点睛】
本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.
11.60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A
解析:60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.
【点睛】
本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.
12.4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1
解析:4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1+∠3=90°
即与∠1互余的角有∠2,∠3
又∵a∥b
∴∠3=∠5,∠2=∠4
∴∠1互余的角有∠4,∠5
∴与∠1互余的角有4个
故答案为:4
【点睛】
本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.
13.95°
【分析】
首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.
解析:95°
【分析】
首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.
【详解】
解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,
∴∠BMF=100°,∠FNB=70°,
∵将△BMN沿MN翻折,得△FMN,
∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,
∴∠F=∠B=180°−50°−35°=95°,
∴∠D=360°−100°−70°−95°=95°.
故答案为:95°.
【点睛】
此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.
14.±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的
解析:±2
【分析】
首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.
【详解】
解:∵M是满足不等式-的所有整数a的和,
∴M=-1+0+1+2=2,
∵N是满足不等式x≤的最大整数,
∴N=2,
∴M+N的平方根为:±=±2.
故答案为:±2.
【点睛】
此题主要考查了估计无理数的大小,得出M,N的值是解题关键.
15.或
【分析】
已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.
【详解】
∵
∴AB=8
∵的面积为
∴=16
∴OC=4
∴点的坐标为(0,4)或(0,-4)
故答案为:(0,4)
解析:或
【分析】
已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.
【详解】
∵
∴AB=8
∵的面积为
∴=16
∴OC=4
∴点的坐标为(0,4)或(0,-4)
故答案为:(0,4)或(0,-4)
【点睛】
本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.
16.【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、
解析:
【分析】
由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.
【详解】
解:观察图形可知,
点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,
,
故点坐标是.
故答案是:.
【点睛】
本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.
三、解答题
17.(1)-3;(2)-11.
【分析】
(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;
(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.
【详解】
(1)解:原式=
(2)解
解析:(1)-3;(2)-11.
【分析】
(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;
(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.
【详解】
(1)解:原式=
(2)解:原式
=
=.
【点睛】
本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.
18.(1)或;(2)
【分析】
(1)直接根据求平方根的方法解方程即可;
(2)直接根据求立方根的方法解方程即可.
【详解】
解:(1)∵,
∴,
∴,
∴或;
(2)∵,
∴,
∴.
【点睛】
本题主
解析:(1)或;(2)
【分析】
(1)直接根据求平方根的方法解方程即可;
(2)直接根据求立方根的方法解方程即可.
【详解】
解:(1)∵,
∴,
∴,
∴或;
(2)∵,
∴,
∴.
【点睛】
本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.
19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=
解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=∠4(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠3=∠C (两直线平行,同位角相等).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代换),
∴AB∥CD(内错角相等,两直线平行).
故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.
【点睛】
此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
21.(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故
解析:(1)5;-5(2)0
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、的范围,求出a、b的值,再代入求出即可.
【详解】
(1)∵5<<6,
∴的整数部分是5,小数部分是-5,
故答案为:5;-5;
(2)∵3<<4,
∴a=-3,
∵3<<4,
∴b=3,
∴=-3+3-=0.
【点睛】
本题考查了估算无理数的大小,能估算出、、的范围是解此题的关键.
二十二、解答题
22.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
二十三、解答题
23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解
解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;
(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.
【详解】
解:(1)∵∠OPA=∠QPB,∠OPQ=82°,
∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,
(2)作PC∥m,
∵m∥n,
∴m∥PC∥n,
∴∠AOP=∠OPC=43°,
∠BQP=∠QPC=49°,
∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,
∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
25.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定
解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°
【分析】
(1)利用平行线的性质求解即可.
(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.
②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.
【详解】
解:(1)如图,
∵AB∥ED
∴∠E=∠EAB=90°(两直线平行,内错角相等),
∵∠BAC=45°,
∴∠CAE=90°-45°=45°.
故答案为:45°.
(2)①如图1中,
∵OG⊥AC,
∴∠AOG=90°,
∵∠OAG=45°,
∴∠OAG=∠OGA=45°,
∴AO=OG=2,
∵S△AHG=•GH•AO=4,S△AHF=•FH•AO=1,
∴GH=4,FH=1,
∴OF=GH-HF-OG=4-1-2=1.
②结论:∠N+∠M=142.5°,度数不变.
理由:如图2中,
∵MF,MO分别平分∠AFO,∠AOF,
∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,
∵NH,NG分别平分∠DHG,∠BGH,
∴∠N=180°-(∠DHG+∠BGH)
=180°-(∠HAG+∠AGH+∠HAG+∠AHG)
=180°-(180°+∠HAG)
=90°-∠HAG
=90°-(30°+∠FAO+45°)
=52.5°-∠FAO,
∴∠M+∠N=142.5°.
【点睛】
本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.
26.(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得
解析:(1)60°;(2)15°;(3)30°或15°
【分析】
(1)利用两直线平行,同旁内角互补,得出,即可得出结论;
(2)先利用三角形的内角和定理求出,即可得出结论;
(3)分和两种情况求解即可得出结论.
【详解】
解:(1),
,
,
,
,
;
(2)由(1)知,,
,
,
,
;
(3)当时,如图3,
由(1)知,,
;
当时,如图4,
,
点,重合,
,
,
由(1)知,,
,
即当以、、为顶点的三角形是直角三角形时,度数为或.
【点睛】
此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键.
展开阅读全文