1、第 1 页(共 4 页)2012 年全国统一高考数学试卷(理科)(新课标)年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共一、选择题:本大题共 12 小题,每小题小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题分,在每小题给同的四个选项中,只有一项是符合题目要求的目要求的 1(5 分)已知集合 A=1,2,3,4,5,B=(x,y)|xA,yA,xyA,则 B 中所含元素的个数为()A3 B6 C8 D10 2(5 分)将 2 名教师,4 名学生分成 2 个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由 1 名教师和 2 名学生组成,不同的安排方案共有()A
2、12 种 B10 种 C9 种 D8 种 3(5 分)下面是关于复数 z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z 的共轭复数为 1+i,p4:z 的虚部为1 Ap2,p3 Bp1,p2 Cp2,p4 Dp3,p4 4(5 分)设 F1、F2是椭圆 E:+=1(ab0)的左、右焦点,P 为直线 x=上一点,F2PF1是底角为 30的等腰三角形,则 E 的离心率为()A B C D 5(5 分)已知an为等比数列,a4+a7=2,a5a6=8,则 a1+a10=()A7 B5 C5 D7 6(5 分)如果执行右边的程序框图,输入正整数 N(N2)和实数 a1,
3、a2,an,输出 A,B,则()AA+B 为 a1,a2,an的和 B为 a1,a2,an的算术平均数 CA 和 B 分别是 a1,a2,an中最大的数和最小的数 DA 和 B 分别是 a1,a2,an中最小的数和最大的数 7(5 分)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则此几何体的体积为()第 2 页(共 4 页)A6 B9 C12 D18 8(5 分)等轴双曲线 C 的中心在原点,焦点在 x 轴上,C 与抛物线 y2=16x 的准线交于点 A 和点B,|AB|=4,则 C 的实轴长为()A B C4 D8 9(5 分)已知 0,函数 f(x)=sin(x+)在
4、区间,上单调递减,则实数 的取值范围是()A B C D(0,2 10(5 分)已知函数 f(x)=,则 y=f(x)的图象大致为()A B C D 11(5 分)已知三棱锥 SABC 的所有顶点都在球 O 的表面上,ABC 是边长为 1 的正三角形,SC 为球 O 的直径,且 SC=2,则此三棱锥的体积为()A B C D 12(5 分)设点 P 在曲线上,点 Q 在曲线 y=ln(2x)上,则|PQ|最小值为()A1ln2 B C1+ln2 D 二填空题:本大题共二填空题:本大题共 4 小题,每小题小题,每小题 5 分分 13(5 分)已知向量夹角为 45,且,则=14(5 分)设 x,y
5、 满足约束条件:;则 z=x2y 的取值范围为 15(5 分)某个部件由三个元件按下图方式连接而成,元件 1 或元件 2 正常工作,且元件 3 正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布 N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过 1000 小时的概率为 16(5 分)数列an满足 an+1+(1)nan=2n1,则an的前 60 项和为 三、解答题:解答应写出文字说明,证明过程或演算步骤三、解答题:解答应写出文字说明,证明过程或演算步骤 17(12 分)已知 a,b,c 分别为ABC 三个内角 A,B,C 的对边,acos
6、C+asinCbc=0(1)求 A;(2)若 a=2,ABC 的面积为;求 b,c 第 3 页(共 4 页)18(12 分)某花店每天以每枝 5 元的价格从农场购进若干枝玫瑰花,然后以每枝 10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理(1)若花店一天购进 16 枝玫瑰花,求当天的利润 y(单位:元)关于当天需求量 n(单位:枝,nN)的函数解析式(2)花店记录了 100 天玫瑰花的日需求量(单位:枝),整理得如表:日需求量 n 14 15 16 17 18 19 20 频数 10 20 16 16 15 13 10 以 100 天记录的各需求量的频率作为各需求量发生的概率(i)若
7、花店一天购进 16 枝玫瑰花,X 表示当天的利润(单位:元),求 X 的分布列、数学期望及方差;(ii)若花店计划一天购进 16 枝或 17 枝玫瑰花,你认为应购进 16 枝还是 17 枝?请说明理由 19(12 分)如图,直三棱柱 ABCA1B1C1中,AC=BC=AA1,D 是棱 AA1的中点,DC1BD(1)证明:DC1BC;(2)求二面角 A1BDC1的大小 20(12 分)设抛物线 C:x2=2py(p0)的焦点为 F,准线为 l,AC,已知以 F 为圆心,FA 为半径的圆 F 交 l 于 B,D 两点;(1)若BFD=90,ABD 的面积为,求 p 的值及圆 F 的方程;(2)若
8、A,B,F 三点在同一直线 m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点,求坐标原点到 m,n 距离的比值 21(12 分)已知函数 f(x)满足 f(x)=f(1)ex1f(0)x+x2;(1)求 f(x)的解析式及单调区间;(2)若,求(a+1)b 的最大值 四、请考生在第四、请考生在第 22,23,24 题中任选一题作答,如果多做,则按所做的第一题计分,作答时请题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号写清题号 第 4 页(共 4 页)22(10 分)如图,D,E 分别为ABC 边 AB,AC 的中点,直线 DE 交ABC 的外接圆于 F,G 两点,若 CFAB,证明:(1)CD=BC;(2)BCDGBD 23选修 44;坐标系与参数方程 已知曲线 C1的参数方程是(为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线 C2的坐标系方程是=2,正方形 ABCD 的顶点都在 C2上,且 A,B,C,D 依逆时针次序排列,点 A 的极坐标为(2,)(1)求点 A,B,C,D 的直角坐标;(2)设 P 为 C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围 24已知函数 f(x)=|x+a|+|x2|当 a=3 时,求不等式 f(x)3 的解集;f(x)|x4|若的解集包含1,2,求 a 的取值范围