1、数学试题一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 3的倒数是( )A 3B. 3C. D. 2. 下列图案中,是轴对称图形的是( )A. B. C. D. 3. 2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次把“14600000”用科学记数法表示为( )A. B. C. D. 4. 在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )A.
2、 38B. 42C. 43D. 455. 函数中自变量取值范围是( )A. B. C. D. 6. 的三边长分别为2,3,4,另有一个与它相似的三角形,其最长边为12,则的周长是( )A. 54B. 36C. 27D. 217. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A. B. C. D. 8. 如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上小炜同学得出以下结论:GFEC;AB=AD;GE=DF;OC=2OF;COFC
3、EG其中正确的是( )A. B. C. D. 二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9. 计算:_10. 已知A的补角是60,则_11. 写出一个在1到3之间的无理数:_12. 若关于的一元二次方程的一个解是,则的值是_13. 如图,是的直径,是的切线,为切点,连接,与交于点,连接若,则_14. 如图,在正方形网格中,的顶点、都在网格线上,且都是小正方形边的中点,则_15. 如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_16. 如图,在中,利用尺规在、上分别截取、,使;分别以
4、、为圆心,大于长为半径作弧,两弧在内交于点;作射线交于点若,则的长为_三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. 计算:18. 解不等式2x1,并把它的解集在数轴上表示出来19. 化简:20. 为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整的统计图表问卷情况统计表:运动项目人数A乒乓球mB排球10C篮球80D跳绳70(1)本次调查的样本容量是_,统计
5、表中m=_;(2)在扇形统计图中,“B排球”对应的圆心角的度数是_;(3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数21. “石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢假设甲、乙两人每次都随意并且同时做出3种手势中的1种(1)甲每次做出“石头”手势概率为_;(2)用画树状图或列表的方法,求乙不输的概率22. 我国古代数学名著九章算术中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四问人数、物价各几何?”其大意是:今有几个人共同
6、出钱购买一件物品每人出8钱,剩余3钱;每人出7钱,还缺4钱问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格23. 如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于、两点点,点的纵坐标为2(1)求反比例函数与一次函数的表达式;(2)求的面积24. 我市的花果山景区大圣湖畔屹立着一座古塔阿育王塔,是苏北地区现存最高和最古老的宝塔小明与小亮要测量阿育王塔的高度,如图所示,小明在点处测得阿育王塔最高点的仰角,再沿正对阿育王塔方向前进至处测得最高点的仰角,;小亮在点处竖立标杆,小亮的所在位置点、标杆顶、最高点在一条直线上,(注:结果精确到,参考数据:,)(1)求阿育王塔的高度;
7、(2)求小亮与阿育王塔之间的距离25. 如图,四边形为平行四边形,延长到点,使,且(1)求证:四边形为菱形;(2)若是边长为2的等边三角形,点、分别在线段、上运动,求的最小值26. 已知二次函数,其中(1)当该函数图像经过原点,求此时函数图像的顶点的坐标;(2)求证:二次函数的顶点在第三象限;(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值27. 【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放其中,【问题探究】小昕同学将三角板绕点B按顺时针方向旋转(1)如图2,当点落在边上时,延长交于点,求的长(2)若点、在同一条直线上,求点到直线的距离(3)连接,取的中点,三角板由初始位置(图1),旋转到点、首次在同一条直线上(如图3),求点所经过的路径长(4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_学科网(北京)股份有限公司