1、七年级下册数学期中考试(最新整理)一、选择题1的平方根是()ABCD2下列图形中,可以由其中一个图形通过平移得到的是()ABCD3点A(-2,-4)所在象限为( )A第一象限B第二象限C第三象限D第四象限4下列命题中是假命题的是( )A等角的补角相等B平行于同一条直线的两条直线平行C对顶角相等D同位角相等5如图,平分,平分,则下列结论:,其中正确的是( )ABCD6下列各组数中,互为相反数的是( )A与B与C与D与7如图,交于点,平分,则的度数为( )A60B55C50D458如图,在平面直角坐标系上有点,点第一次向左跳动至,第二次向右跳动至,第三次向左跳动至,第四次向右跳动至依照此规律跳动下
2、去,点第124次跳动至的坐标为( )ABCD二、填空题9若,则=_10点P(2,3)关于x轴的对称点的坐标是_11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,EAD的度数为_.12如下图,C岛在A岛的北偏东65方向,在B岛的北偏西35方向,则_度13如图为一张纸片沿直线折成的V字形图案,已知图中,则_14下列命题中,属于真命题的有_(填序号):互补的角是邻补角;无理数是无限不循环小数;同位角相等;两条平行线的同旁内角的角平分线互相垂直;如果,那么15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量
3、关系式为_16如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,2),A5(5,2),A6(6,0),按这样的规律,则点A2021的坐标为 _三、解答题17计算下列各题:(1); (2)-;(3)-+.18求下列各式中的 (1) (2)19如图,已知EFAD,试说明请将下面的说明过程填写完整解:EFAD,已知_又,已知,_,_20在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上(1)将 ABC先向下平移2个单位长度,再向右平移5个单位长度得到 A1B1C1,画出 A1B1C1(2)求 A1B1C1的面积21已知a是的整数部
4、分,b是的小数部分(1)求a,b的值; (2)求的平方根22(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由23汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即
5、,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?【参考答案】一、选择题1C解析:C【分析】根据平方根的定义开平方求解即可;【详解】解:,的平方根是;故答案选C【点睛】本题主要考查了平方根的计算,准确计算是解题的关键2C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C【点睛】本题考查的解析:C【分析】根据平移
6、的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键3C【分析】先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限【详解】A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,所以点A在第三象限故选C【点睛】本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据等角的补角
7、,平行线的性质,对顶角的性质,进行判断【详解】A. 等角的补角相等,是真命题,不符合题意;B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;C. 对顶角相等,是真命题,不符合题意;D. 两直线平行,同位角相等,原命题是假命题,符合题意;故选D【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识5B【分析】根据角平分线的性质可得,再利用平角定义可得BCF=90,进而可得正确;首先计算出ACB的度数,再利用平行线的性质可得2的度数,从而可得1的度数;利用三角形内角和计算出3的度数,然后计算出ACE的度数,可分析出错误;根据3和4的度数可得正确【
8、详解】解:如图,BC平分ACD,CF平分ACG, ACG+ACD=180,ACF+ACB=90,CBCF,故正确,CDAB,BAC=50,ACG=50,ACF=4=25,ACB=90-25=65,BCD=65,CDAB,2=BCD=65,1=2,1=65,故正确;BCD=65,ACB=65,1=2=65,3=50,ACE=15,ACE=24错误;4=25,3=50,3=24,故正确,故选:B【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系6C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得【详解】A、,则与不是相反数,此项不符题
9、意;B、与不是相反数,此项不符题意;C、,则与互为相反数,此项符合题意;D、,则与不是相反数,此项不符题意;故选:C【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键7C【分析】根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得【详解】, 又,平分,故选:C【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点8A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标
10、解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),第124次跳动至点的坐标是(63,62)故选:A【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键二、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可
11、【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键10(2,3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数【详解】点P(2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,对称点的坐标是(2,3)故答案为解析:(2,3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数【详解】点P(2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,
12、对称点的坐标是(2,3)故答案为(2,3)【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到1110或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,B
13、AE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30=40故答案为10或40【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数12100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35
14、=6535=100故答案为:100【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线两直线平行,内错角相等1370【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+2解析:70【分析】根据1+22=180求解即可【详解】解:1+22=180,2=70故答案为:70【点睛】本题考查了折叠的性质,角的和差计算,由图得出1+22=180是解答本题的关键14【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可【详解】解:邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;无理
15、数是无限不循环小数,正确,是真命题;解析:【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可【详解】解:邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;无理数是无限不循环小数,正确,是真命题;两直线平行,同位角相等,故错误,是假命题;如图所示,直线a,b被直线c所截,且a/b,直线AB平分CAE,直线CD平分ACF,AB,CD相交于点G求证:ABCD证明:a/b,CAE+ACF=180又AB平分CAE,CD平分ACF,所以1=CAE,2=ACF所以1+2=CAE+ACF=(CAE+ACF)=180=90又ACG的内角和为180,AGC=180-(1+2)=180-90=9
16、0,ABCD两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;如果,那么,正确,是真命题故答案为:【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理15【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=
17、3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形16(2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解解析:(2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现,每6个点形成一个
18、循环,A6(6,0),OA66,202163365,点A2021的位于第337个循环组的第5个,点A2021的横坐标为6336+52021,其纵坐标为:2,点A2021的坐标为(2021,2)故答案为:(2021,2)【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解三、解答题17(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)-
19、=-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),解析:(1)或;(2)【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可【详解】解:(1),;(2),【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键19;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】
20、根据平行线的判定和性质解答即可【详解】解:EFAD,(已知)(两直线平行,同位角相等)解析:;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可【详解】解:EFAD,(已知)(两直线平行,同位角相等)又,(已知),(等量代换),(内错角相等,两直线平行)(两直线平行,同旁内角互补)故答案为: ;两直线平行,同位角相等 ;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键20(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答
21、案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求解析:(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求;(2)如图所示,A1B1C1的面积=【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接21(1)a=2,b=;(2)3【分析】(1)首先估算出的范围,从而得到和的范围,可得a,b值;(2)将a,b的值代入计算,再求平方根即可【详解】解:(1),a=2,
22、b解析:(1)a=2,b=;(2)3【分析】(1)首先估算出的范围,从而得到和的范围,可得a,b值;(2)将a,b的值代入计算,再求平方根即可【详解】解:(1),a=2,b=;(2)=的平方根为3【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键22(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小
23、比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2)不能裁出长和宽之比为的长方形,理由如下:设裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键23(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的
24、式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键