1、2013年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来每小题选对得3分,选错、不选或选出的答案超过一个均计零分1(3分)下列计算正确的是()A|3|3B300C313D32(3分)如图,ABCD,CDE140,则A的度数为()A140B60C50D403(3分)估计的值在()A2到3之间B3到4之间C4到5之间D5到6之间4(3分)化简的结果是()Ax+1Bx1CxDx5(3分)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A240元B250元C280元D300元6(3分)如图
2、,ABC中,ABAC10,BC8,AD平分BAC交BC于点D,点E为AC的中点,连接DE,则CDE的周长为()A20B12C14D137(3分)若关于x的一元二次方程x22x+m0有两个不相等的实数根,则m的取值范围是()Am1Bm1Cm1Dm18(3分)对于非零的实数a、b,规定ab若2(2x1)1,则x()ABCD9(3分)图(1)是一个长为2a,宽为2b(ab)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()AabB(a+b)2C(ab)2Da2b210(3分)如图,已知线段OA交O于点B,且O
3、BAB,点P是O上的一个动点,那么OAP的最大值是()A90B60C45D3011(3分)将抛物线y3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()Ay3(x2)21By3(x2)2+1Cy3(x+2)21Dy3(x+2)2+112(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使MEMC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()ABCD二、填空题:本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分13(4分)若a2b2,ab,则a+b的值为 14(4分)在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中
4、心对称图形,涂黑的小正方形的序号是 15(4分)从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是 16(4分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 17(4分)已知正比例函数y2x与反比例函数y的图象的一个交点坐标为(1,2),则另一个交点的坐标为 18(4分)已知矩形ABCD中,AB1,在BC上取一点E,将ABE沿AE向上折叠,使B点落在AD上的F点若四边形EFDC与矩形ABCD相似,则AD 三、解答题:本大题共7小题,满分60分解答时,要写出必要的文字说
5、明、证明过程或演算步骤19(8分)先化简,再求值:(m+2)其中m是方程x2+3x10的根20(8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上(1)在图1中画出ABC(点C在小正方形的顶点上),使ABC为直角三角形(画一个即可);(2)在图2中画出ABD(点D在小正方形的顶点上),使ABD为等腰三角形(画一个即可)21(8分)“六一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品以下是根据抽查结果绘制出的不完整的统计表和扇形图:类别儿童玩具童车童装抽查件数90 请根据上述统计表和扇形图提供的信息,完
6、成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?22(8分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使CAD30,CBD60(1)求AB的长(精确到0.1米,参考数据:1.73,1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒
7、,这辆校车是否超速?说明理由23(8分)如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,ABOC,AOC90,BCO45,BC12,点C的坐标为(18,0)(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE4,OD2BD,求直线DE的解析式24(10分)如图,AB是O的直径,AC是弦,直线EF经过点C,ADEF于点D,DACBAC(1)求证:EF是O的切线;(2)求证:AC2ADAB;(3)若O的半径为2,ACD30,求图中阴影部分的面积25(10分)如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与x轴交于A、B两点,A点在原点
8、的左侧,B点的坐标为(3,0),与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积2013年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来每小题选对得3分,选错、不选或选出的答案超过一个均计零分1【分析】A、根据绝对
9、值的定义计算即可;B、任何不等于0的数的0次幂都等于1;C、根据负整数指数幂的法则计算;D、根据算术平方根计算,直接求9的算术平方根即可再比较结果即可【解答】解:A、|3|3,此选项正确;B、301,此选项错误;C、31,此选项错误;D、3,此选项错误故选:A【点评】本题考查了绝对值、零指数幂、算术平方根、负整数指数幂,解题的关键是掌握这些运算的运算法则2【分析】先求出CDE的邻补角,再根据两直线平行,内错角相等解答【解答】解:CDE140,ADC18014040,ABCD,AADC40故选:D【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键3【分析】利用”夹逼法“得出的范
10、围,继而也可得出的范围【解答】解:23,34,故选:B【点评】此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用4【分析】将分母化为同分母,通分,再将分子因式分解,约分【解答】解:x,故选:D【点评】本题考查了分式的加减运算分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减5【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可【解答】解:设这种商品每件的进价为x元,由题意得:3300.8x10%x,解得:x240,即这种商品每件
11、的进价为240元故选:A【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般6【分析】根据等腰三角形三线合一的性质可得ADBC,CDBD,再根据直角三角形斜边上的中线等于斜边的一半可得DECEAC,然后根据三角形的周长公式列式计算即可得解【解答】解:ABAC,AD平分BAC,BC8,ADBC,CDBDBC4,点E为AC的中点,DECEAC5,CDE的周长CD+DE+CE4+5+514故选:C【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键7【分析】根据根的判别式的意义得到224m0,然
12、后解不等式即可【解答】解:根据题意得224m0,解得m1故选:B【点评】本题考查了一元二次方程ax2+bx+c0(a0)的根的判别式b24ac:当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根8【分析】根据新定义得到1,然后把方程两边都乘以2(2x1)得到2(2x1)2(2x1),解得x,然后进行检验即可【解答】解:2(2x1)1,1,去分母得2(2x1)2(2x1),解得x,检验:当x时,2(2x1)0,故分式方程的解为x故选:A【点评】本题考查了解分式方程:先去分母,把分式方程转化为整式方程,解整式方程,然后把整式方程的解代入原方程进行检验,最后确定分式方
13、程的解也考查了阅读理解能力9【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得【解答】解:中间部分的四边形是正方形,边长是a+b2bab,则面积是(ab)2故选:C【点评】本题考查了列代数式,正确表示出小正方形的边长是关键10【分析】当AP与O相切时,OAP有最大值,连结OP,根据切线的性质得OPAP,由OBAB得OA2OP,然后根据含30度的直角三角形三边的关系即可得到此时OAP的度数【解答】解:当AP与O相切时,OAP有最大值,连结OP,如图,则OPAP,OBAB,OA2OP,PAO30故选:D【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径也考查了含30度的直角三角形三
14、边的关系11【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可【解答】解:抛物线y3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(2,1),所得抛物线为y3(x+2)21故选:C【点评】本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键12【分析】利用勾股定理求出CM的长,即ME的长,有DEDG,可以求出DE,进而得到DG的长【解答】解:四边形ABCD是正方形,M为边DA的中点,DMADDC1,CM,MEMC,EDEMDM1,四边形EDGF是正方形,DGDE1故选:D【点评】本题考查了正方形的性质和勾股定理的运用,属于基础题目二、填
15、空题:本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分13【分析】已知第一个等式左边利用平方差公式化简,将ab的值代入即可求出a+b的值【解答】解:a2b2(a+b)(ab),ab,a+b故答案为:【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键14【分析】通过观察发现,当涂黑时,所形成的图形为中心对称图形【解答】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形故答案为:【点评】本题考查了利用旋转设计图案和中心对称图形的定义,一个图形绕端点旋转180所形成的图形叫中心对称图形15【分析】分析可得:从1,2,3,4中任取一个数作为十位
16、上的数,再从2,3,4中任取一个数作为个位上的数,共12种取法,其中4个两位数是3的倍数,故其概率为【解答】解:P(两位数是3的倍数)412故本题答案为:【点评】本题考查的是概率的求法如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)16【分析】根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案【解答】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是22624故答案为:24【点评】此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样
17、比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等17【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称【解答】解:根据中心对称的性质可知另一个交点的坐标是:(1,2)故答案为:(1,2)【点评】本题考查了反比例函数图象的中心对称性,较为简单,容易掌握18【分析】可设ADx,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可【解答】解:AB1,设ADx,则FDx1,FE1,四边形EFDC与矩形ABCD相似,解得x1,x2(不合题意舍去),经检验x1是原方程的解故答案为【点评】本题考查了翻
18、折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式三、解答题:本大题共7小题,满分60分解答时,要写出必要的文字说明、证明过程或演算步骤19【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x10的根,那么m2+3m10,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可【解答】解:原式;m是方程x2+3x10的根m2+3m10,即m2+3m1,原式【点评】本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入20【分析】(1)利用网格结构,过点A的竖直线与过点
19、B的水平线相交于点C,连接即可,或过点A的水平线与过点B的竖直线相交于点C,连接即可;(2)根据网格结构,作出BDAB或ABAD,连接即可得解【解答】解:(1)如图1,、,画一个即可;(2)如图2,、,画一个即可【点评】本题考查了应用与设计作图,(1)中作直角三角形时根据网格的直角作图即可,比较简单,(2)中根据网格结构作出与AB相等的线段是解题的关键,灵活性较强21【分析】(1)根据童车的数量是30025%,童装的数量是3007590,儿童玩具占得百分比是100%,童装占得百分比130%25%45%,即可补全统计表和统计图;(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式
20、计算即可【解答】解:(1)解:(1)童车的数量是30025%75,童装的数量是3007590135,儿童玩具占得百分比是100%30%,童装占得百分比130%25%45%,如图;类别儿童玩具童车童装抽查件数9075135;(2)根据题意得出:0.85答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85【点评】本题考查的是统计表和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图能够清楚地表示各部分所占的百分比22【分析】(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得
21、这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【解答】解:(1)由題意得,在RtADC中,AD36.33(米),2分在RtBDC中,BD12.11(米),4分则ABADBD36.3312.1124.2224.2(米)6分(2)超速理由:汽车从A到B用时2秒,速度为24.2212.1(米/秒),12.1360043560(米/时),该车速度为43.56千米/小时,9分 大于40千米/小时,此校车在AB路段超速10分【点评】此题考查了解直角三角形的应用问题此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用23【分析】(1)先过点B作BFx轴于F,根
22、据BCO45,BC,求出CFBF的长,再根据点C的坐标,求出ABOF的值,从而求出点B的坐标(2)先过点D作DGy轴于点G,根据ABDG,得出ODGOBA,再根据AB6,OA12,求出DG与OG的值,从而求出点D与点E的坐标,最后设直线DE的解析式为ykx+b(k0),再把D与E点的坐标代入,即可求出直线DE的解析式【解答】解:(1)过点B作BFx轴于F,在RtBCF中,BCO45,CBF45,BC,CFBF12,点C的坐标为(18,0),ABOF18126点B的坐标为(6,12)(2)过点D作DGy轴于点GABDG,ODGOBA,AB6,OA12,DG4,OG8D(4,8),E(0,4),设
23、直线DE的解析式为ykx+b(k0),将D(4,8),E(0,4)代入,得, 解得 ,直线DE解析式为yx+4【点评】此题考查了一次函数的综合,用到的知识点是一次函数的图象与性质、相似三角形的判定与性质,关键是根据相似求出线段的长度得出点的坐标24【分析】(1)连接OC,根据OAOC推出BACOCADAC,推出OCAD,得出OCEF,根据切线的判定推出即可;(2)证ADCACB,得出比例式,即可推出答案;(3)求出等边三角形OAC,求出AC、AOC,在RtACD中,求出AD、CD,求出梯形OCDA和扇形OCA的面积,相减即可得出答案【解答】(1)证明:连接OC,OAOC,BACOCA,DACB
24、AC,OCADAC,OCAD,ADEF,OCEF,OC为半径,EF是O的切线(2)证明:连接BC,AB为O直径,ADEF,BCAADC90,DACBAC,ACBADC,AC2ADAB(3)解:ACD30,OCD90,OCA60,OCOA,OAC是等边三角形,ACOAOC2,AOC60,在RtACD中,ADAC21,由勾股定理得:DC,阴影部分的面积是SS梯形OCDAS扇形OCA(2+1)【点评】本题考查了切线的性质和判定,相似三角形的性质和判定,梯形的性质,扇形的面积等知识点的应用,主要考查学生能否运用性质进行推理和计算,题目具有一定的代表性,是一道比较好的题目25【分析】(1)将B、C的坐标
25、代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POPC为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于ABC的面积为定值,当四边形ABPC的面积最大时,BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积
26、及对应的P点坐标【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:yx22x3(2)存在点P,使四边形POPC为菱形;设P点坐标为(x,x22x3),PP交CO于E若四边形POPC是菱形,则有PCPO;连接PP,则PECO于E,C(0,3),CO3,又OEEC,OEECy;x22x3解得x1,x2(不合题意,舍去),P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x22x3),设直线BC的解析式为:ykx+d,则,解得:直线BC的解析式为yx3,则Q点的坐标为(x,x3);当0x22x3,解得:x11,x23,AO1,AB4,S四边形ABPCSABC+SBPQ+SCPQABOC+QPBF+QPOF当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为【点评】此题考查了二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/10/21 11:43:35;用户:18366185883;邮箱:18366185883;学号:22597006第19页(共19页)