1、2010年湖南省娄底市中考数学试卷(教师版)一、选择题(共10小题,每小题3分,满分30分)1(3分)的倒数是()A3BCD3【考点】17:倒数菁优网版权所有【分析】根据倒数的定义可得到的倒数为3【解答】解:的倒数为3故选:A【点评】本题考查了倒数的定义:a(a0)的倒数为2(3分)2010年3月,温家宝总理在2010年政府工作报告中指出,2009年在国际金融危机的强烈冲击下,我国国内生产总值仍达到33.5万亿元,比上年增长8.7%33.5万亿元这个数据用科学记数法表示为()A33.5109元B33.51012元C3.351012元D3.351013元【考点】1I:科学记数法表示较大的数菁优网
2、版权所有【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数【解答】解:33.5万亿33 500 000 000 0003.351013元故选:D【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(3分)不等式组的解集在数轴上表示正确的是()ABCD【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组菁优网版权所有【分析】本题
3、应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围【解答】解:原不等式化简为:在数轴上可表示为:故选:B【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断要注意x是否取得到,若取得到则x在该点是实心的反之x在该点是空心的4(3分)一次函数ykx+b(k0)与反比例函数y(k0)的图象如图所示,则下列结论中正确的是()Ak0,b0Bk0,b0Ck0,b0Dk0,b0【考点】F3:一次函数的图象;G2:反比例函数的图象菁优网版权所有【分析】分别根据一次函数与反比例函数图象的特点判断其系数所要满足的条件【解答】解:由一次函数ykx+b(k0)的图象过二、三、四象限可知
4、,k0,b0;由反比例函数y(k0)的图象过二、四象限可知,k0故选:D【点评】主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题5(3分)如图所示,图中三角形的个数共有()A1个B2个C3个D4个【考点】K1:三角形菁优网版权所有【分析】根据三角形的定义进行判断只要数出BC上有几条线段即可很明显BC上有3条线段,所以有三个三角形【解答】解:BC上有3条线段,所以有三个三角形故选C【点评】三角形的定义中应注意“首尾顺次连接”这一含义6(3分)下列说法中,错误的是()A平行四边形的对角线互相平分B矩形的对角线相互垂直C菱形的对角线互相垂直平分D等腰梯形的对角线相等【
5、考点】L5:平行四边形的性质;L8:菱形的性质;LB:矩形的性质;LJ:等腰梯形的性质菁优网版权所有【分析】可以根据平行四边形的性质、矩形的性质、菱形的性质和等腰梯形的性质利用排除法求解【解答】解:A、平行四边形的对角线互相平分,正确;B、应为矩形的对角线相等且互相平分,故本选项错误;C、菱形的对角线互相垂直平分,正确;D、等腰梯形的对角线相等,正确故选:B【点评】本题主要考查特殊四边形的对角线的性质,熟练掌握是解本题的关键7(3分)在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A与x轴相切,与y轴相切B与x轴相切,与y轴相交C与x轴相交,与y轴相切D与x轴相交,与y轴相交【
6、考点】D5:坐标与图形性质;MB:直线与圆的位置关系菁优网版权所有【分析】由已知点(3,2)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系设d为直线与圆的距离,r为圆的半径,则有若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离【解答】解:点(3,2)到x轴的距离是2,小于半径,到y轴的距离是3,等于半径,圆与x轴相交,与y轴相切故选C【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定8(3分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A冷B静C应D考【考
7、点】I8:专题:正方体相对两个面上的文字菁优网版权所有【分析】利用正方体及其表面展开图的特点解题【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对故选:B【点评】注意正方体的空间图形,从相对面入手,分析及解答问题9(3分)如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,4)连接AB得到AOB现将AOB绕原点O顺时针旋转90得到AOB,则A对应点A的坐标为()A(4,0)B(0,4)C(4,0)D(0,4)【考点】R7:坐标与图形变化旋转菁优网版权所有【分析】根据题意画出图形旋转后的位置,确定对应点的坐
8、标【解答】解:ABO位置如图A(0,4),OAOA4A(4,0)故选:A【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90,通过画图得A坐标10(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是()A15,16B15,15C15,15.5D16,15【考点】W4:中位数;W5:众数菁优网版权所有【分析】众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;排序后位于中间位置的数,或中间两数的平均数【解答】解:14岁有1人,15岁有4人,16岁有3人,17
9、岁有2人,18岁有2人,出现次数最多的数据是15,队员年龄的众数为15岁;一共有12名队员,因此其中位数应是第6和第7名同学的年龄的平均数,中位数为(16+16)216,故中位数为16故选:A【点评】本题考查了众数及中位数的概念,在确定中位数的时候应该先排序,确定众数的时候一定要仔细观察二、填空题(共8小题,每小题4分,满分32分)11(4分)计算:(2010)0+|1|2【考点】15:绝对值;6E:零指数幂菁优网版权所有【分析】根据零指数幂和绝对值的定义计算即可【解答】解:(2010)0+|1|1+12【点评】本题考查实数的综合运算能力涉及知识点:任何非0数的0次幂等于1;绝对值的运算12(
10、4分)如果点P(m1,2m)在第四象限,则m的取值范围是m2【考点】CB:解一元一次不等式组;D1:点的坐标菁优网版权所有【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数【解答】解:点P(m1,2m)在第四象限,解得m2,故m的取值范围是m2【点评】本题考查象限点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键13(4分)阅读材料:若一元二次方程ax2+bx+c0的两个实数根为x1,x2,则两根与方程系数之间有如下关系:x1+x2,x1x2根据上述材料填空:已知x1,x2是方程x2+4x+20的两个实数根,则2【考点】AB:根与系数的关系菁优网版权所有【分析】根据一
11、元二次方程根与系数的关系,可以求得两根之积或两根之和,根据,代入数值计算即可【解答】解:x1,x2是方程x2+4x+20的两个实数根,x1+x24,x1x22又,2故填空答案:2【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法14(4分)二次函数y(x1)22的图象的对称轴是直线x1【考点】H3:二次函数的性质菁优网版权所有【分析】已知抛物线的顶点式,可知顶点坐标和对称轴【解答】解:y(x1)22是抛物线的顶点式,根据顶点式的坐标特点可知,对称轴为直线x1【点评】顶点式ya(xh)2+k,顶点坐标是(h,k),对称轴是xh15(4分)如图,直
12、线AB、CD相交于点OOE平分AOD,若BOD100,则AOE40度【考点】IJ:角平分线的定义;J2:对顶角、邻补角菁优网版权所有【分析】首先利用邻补角互补求出AOD,再利用角平分线的定义计算【解答】解:AOD与BOD互为邻补角,BOD100,AOD180BOD80,又OE平分AOD,AOE40故答案为:40【点评】本题考查了利用邻补角和角平分线的定义,在相交线中角的度数的求解方法16(4分)如图,在半径为R的O中,弦AB的长与半径R相等,C是优弧上一点,则ACB的度数是30度【考点】M5:圆周角定理菁优网版权所有【分析】连接OA、OB,由于弦AB的长和半径相等,可证得AOB是等边三角形,即
13、AOB60,再由同弧所对的圆周角和圆心角的关系可求得ACB的度数【解答】解:连接OA、OB;OAOBABR,OAB是等边三角形;AOB60;ACBAOB30【点评】此题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半17(4分)如果圆锥的底面周长为20cm,侧面展开后所得的扇形的圆心角是120,则该圆锥的侧面积是300cm2(结果保留)【考点】MP:圆锥的计算菁优网版权所有【分析】圆锥的侧面积是一个扇形,根据扇形公式计算即可【解答】解:圆锥的底面周长为20cm即展开的扇形弧长为20cm根据弧长公式得:解得:r30圆锥的侧面积300cm2【点评】本题主要考查了扇形侧面积的计算方法18(4分
14、)一只布袋内有1个白球、3个红球、6个黑球(这些球除颜色外,其余没有区别),从中任意取出一球,则取得红球的概率是【考点】X4:概率公式菁优网版权所有【分析】让红球的个数除以球的总个数即为所求的概率【解答】解:根据古典概率定义,任意取出一球,则取得红球的概率是【点评】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)三、解答题(共7小题,满分58分)19(7分)已知:,试说明不论x为任何有意义的值,y值均不变【考点】6C:分式的混合运算菁优网版权所有【分析】先把分子分母分解因式再化简约分即可【解答】证明:xx+33故不论x为任
15、何有意义的值,y值均不变【点评】本题主要考查了分式的混合运算能力20(8分)如图,在一个坡角为20的斜坡上有一棵树,高为AB,当太阳光线与水平线成52角时,测得该树斜坡上的树影BC的长为10m,求树高AB(精确到0.1m)(已知:sin200.342,cos200.940,tan200.364,sin520.788,cos520.616,tan521.280供选用)【考点】T9:解直角三角形的应用坡度坡角问题菁优网版权所有【分析】过C作AB的垂线,设垂足为D在RtCDB中,已知斜边BC10m,利用三角函数求出CD和BD的长同理在ACD中,已知ACD52,CD,求出AD长,计算出ABADBD,从
16、而得到树的高度【解答】解:作CDAB于D在RtBCD中,BC10m,BCD20,CDBCcos20100.9409.40(m),BDBCsin20100.3423.42(m);在RtACD中,CD9.40m,ACD52,ADCDtan529.401.28012.032(m)ABADBD12.0323.428.6(m)答:树高8.6米【点评】本题考查了解直角三角形中有关坡角问题:把问题转化为解直角三角形,已知一边和一锐角可解此直角三角形21(8分)为了了解九年级学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A、1.5小时
17、以上(含1.5小时)B、11.5小时(含1小时,不含1.5小时)C、0.51小时(含0.5小时,不含1小时)D、0.5小时以下(不含0.5小时)如图是根据调查结果绘制的两幅不完整的统计图:请根据以上条形统计图、扇形统计图提供的信息,解答下列问题:(1)学校共调查了80名学生;(2)扇形统计图中B选项所占的百分比为40%(3)请补全条形统计图;(4)若该校九年级共有400名学生,请估计该校九年级平均每天参加体育活动时间再1小时以上(含1小时)的学生约有260名【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图菁优网版权所有【分析】(1)根据A等20人占总体的25%,即可求得总人数;
18、(2)根据扇形统计图各部分所占的百分比即可求得B选项所占的百分比;(3)根据总人数和扇形统计图所占的百分比求得C等人数,进一步补全条形统计图;(4)首先根据扇形统计图,得到A等和B等人数所占的百分比,进而估计总体【解答】解:(1)2025%80(人);(2)15%25%30%40%;(3)C等:8030%24(人)(4)400(25%+40%)260(人)【点评】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比22(8分)近年来,政府大力投资改善学校的办学条件,并切
19、实加强对学生的安全管理和安全教育某中学新建了一栋教学大楼,进出这栋教学大楼共有2道正门和2道侧门,其中两道正门大小相同,两道侧门大小也相同安全检查中,对4道门进行了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟内可以通过840名学生(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下,全大楼的学生应在5分钟内通过这4道门安全撤离假设这栋教学大楼的教室里最大有1500名学生,试问建造的这4道门是否符合安全规定?请说明理由【考点】9A:二元一
20、次方程组的应用菁优网版权所有【分析】(1)设每分钟通过一道正门的学生为x个,每分钟通过一道侧门的学生为y个,则由4分钟通过一道正门和一道侧门时可以通过800名学生可得(x+y)4800,由开启一道正门和两道侧门时,3分钟内可以通过840名学生可得(x+2y)3840(2)紧急情况时因学生拥挤,出门的效率将降低20%,则这四道门最多能通过的学生数为(80+120)2(120%)51600,而学生最多人数为1500,故符合安全规定【解答】解:(1)设每分钟通过一道正门的学生为x个,每分钟通过一道侧门的学生为y个,依题意可得方程组小(x+y)4800,(x+2y)3840,解方程组的x120,y80
21、(2)这4道门符合安全规定(80+120)2(120%)51600,比1500大,在紧急情况下,在出门的效率将降低20%,四道门可以在5分钟内安全通过1600名学生全大楼1500名学生可以在5分钟内通过这4道门安全撤离安全所以,这四道门符合安全规定【点评】用二元一次方程组解决问题23(7分)如图,在四边形ABCD中,ADBC,E为CD的中点,连接AE、BE,BEAE,延长AE交BC的延长线于点F求证:(1)FCAD;(2)ABBC+AD【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质菁优网版权所有【分析】(1)根据ADBC可知ADCECF,再根据E是CD的中点可求出ADEFCE
22、,根据全等三角形的性质即可解答(2)根据线段垂直平分线的性质判断出ABBF即可【解答】证明:(1)ADBC(已知),ADCECF(两直线平行,内错角相等),E是CD的中点(已知),DEEC(中点的定义)在ADE与FCE中,ADEFCE(ASA),FCAD(全等三角形的性质)(2)ADEFCE,AEEF,ADCF(全等三角形的对应边相等),BE是线段AF的垂直平分线,ABBFBC+CF,ADCF(已证),ABBC+AD(等量代换)【点评】此题主要考查线段的垂直平分线的性质等几何知识线段的垂直平分线上的点到线段的两个端点的距离相等24(8分)已知:二次函数yax2+bx+c的图象与x轴交于A、B两
23、点,与y轴交于点C,其中点A的坐标是(2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OCOB)是方程x210x+240的两个根(1)求B、C两点的坐标;(2)求这个二次函数的解析式【考点】A8:解一元二次方程因式分解法;H8:待定系数法求二次函数解析式;HA:抛物线与x轴的交点菁优网版权所有【分析】(1)解方程求已知方程的两根,根据题意确定B、C两点坐标;(2)抛物线过A(2,0),B(6,0),设交点式,把C(0,4)代入求待定系数即可【解答】解:(1)解方程x210x+240,得x16,x24,OCOB,B(6,0),C(0,4);(2)抛物线与x轴交于A(2,
24、0),B(6,0)设抛物线解析式ya(x+2)(x6)把C(0,4)代入解析式,得4a(0+2)(06),解得a,y(x+2)(x6)即yx2+x+4【点评】本题考查了解一元二次方程,点的坐标的求法,待定系数法求二次函数解析式的方法25(12分)如图,在梯形ABCD中,ABDC,AB2,DC10,ADBC5,点M、N分别在AD、BC上运动,并保持MNAB,MEDC,NFDC,垂足分别为E、F(1)求梯形ABCD的面积;(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;(3)探究二:四边形MNFE能否为正方形?若能,请求出正方形的面积;若不能,请说明理由【考
25、点】H7:二次函数的最值;LF:正方形的判定;LH:梯形菁优网版权所有【分析】(1)要求梯形ABCD的面积,需先求梯形的高,可作高根据勾股定理易求得;(2)尝试把四边形MNFE的面积用二次函数的形式表达出来,再由二次函数的最值问题讨论;(3)在(2)的基础上,使MNME,求解即可【解答】解:(1)如图,过点A作AGCD于G,过B作BQDC于Q,则AGBQ,ABDC,四边形AGQB是平行四边形,ABGQ2,AGBQ,由勾股定理得:DG,CQ,ADBC,AGBQ,DGCQ(102)24,在RtADG中,AG3,S梯形ABCD(2+10)3218;(2)设MNx,AG与MN交于点O,MNCD,AMOADG,MO:DGAO:AG,即:AO:3,AO,OG3,S矩形MNFExxx2,二次项系数小于0,当x5时,四边形MNFE的面积有最大值:4()0()24();(3)当MNME时,四边形MNFE能为正方形由(2)可得,MEOG,则x,解得x,此时,正方形MNFE的面积为:()2【点评】此题考查了梯形的面积、二次函数的最值、正方形的判定等知识点,综合性很强声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/12/12 20:58:30;用户:初中数学;邮箱:sx0123;学号:30177373第17页(共17页)