1、哈尔滨市2013年初中升学考试 数学试卷一、选择题(每小题3分共计30分)1的倒数是( ) (A)3 (B)一3 (C) (D) 2下列计算正确的是( ) (A)a3+a2=a5 (B)a3a2=a6 (C)(a2)3=a6 (D) 3下列图形中,既是轴对称图形又是中心对称图形的是( )4如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( )5把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )(A)y=(x+2)2+2 (B)y=(x+2)2-2 (C)y=x2+2 (D)y=x2-26反比例函数的图象经过点(-2,3),则k的值为(
2、) (A)6 (B)-6 (C) (D) 7如图,在ABCD中,AD=2AB,CE平分BCD交AD边于点E, 且AE=3,则AB的长为( )(A)4 (B)3 (C) (D)28在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回再随机地摸出一个球则两次都摸到白球的概率为( )(A) (B) (C) (D) 9 如图,在ABC中,M、N分别是边AB、AC的中点,则AMN的面积与四边形MBCN的面积比为( )(A) (B) (C) (D) 10梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0
3、千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示下列四种说法:一次购买种子数量不超过l0千克时,销售价格为5元/千克;一次购买30千克种子时,付款金额为100元;一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱其中正确的个数是( )(A)1个 (B)2个 (C)3个 (D) 4个二、填空题(每小题3分共计30分)1 1把98 000用科学记数法表示为 1 2在函数中,自变量x的取值范围是 13计算:= 14不等式组3x-12,x+31的解集是
4、 15把多项式分解因式的结果是 16一个圆锥的侧面积是36 cm2,母线长是12cm,则这个圆锥的底面直径是 cm17如图,直线AB与O相切于点A,AC、CD是O的两条弦,且CDAB,若O 的半径为,CD=4,则弦AC的长为 18某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 19在ABC中,AB=,BC=1,ABC=450,以AB为一边作等腰直角三角形ABD,使ABD=900,连接CD,则线段CD的长为 20如图。矩形ABCD的对角线AC、BD相交于点0,过点O作OEAC交AB于E,若BC=4,AOE的面积为5,则sinBOE的值为 三、解答题(其中21
5、-24题各6分25-26题各8分27-28题各l0分共计60分)21(本题6分) 先化简,再求代数式的值,其中22(本题6分) 如图。在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A、B、M、N均在小正方形的顶点上 (1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C; (2)请直接写出四边形ABCD的周长23(本题6分) 春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题
6、,在全校范围内随机抽取部分学生进行问卷调查将调查结果整理后绘制成如图所示的不完整的条形统计图其中最喜欢新闻类电视节目的人数占被抽取人数的l0请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图: (2)如果全校共有l 200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?24(本题6分) 某水渠的横截面呈抛物线形,水面的宽为AB(单位:米)。现以AB所在直线为x轴以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O已知AB=8米。设抛物线解析式为y=ax2-4 (1)求a的值; (2)点C(一1,m)是抛物线上一点
7、,点C关于原点0的对称点为点D,连接CD、BC、BD,求ABCD的面积25(本题8分) 如图,在ABC中,以BC为直径作半圆0,交AB于点D,交AC于点EAD=AE (1)求证:AB=AC; (2)若BD=4,BO=,求AD的长26(本题8分) 甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l0天。且甲队单独施工45天和乙队单独施工30天的工作量相同 (1)甲、乙两队单独完成此项任务各需多少天? 、 (2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度。甲队的工作效率提高到原来的2倍。要使甲队总的工作量
8、不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天? 27(本题l0分) 如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位秒。设运动时间为t秒 (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将BEF绕点B逆时针旋转得到BE1F1,使点E的对应点E1落在线段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= QG? 28(本题l0分) 已知:ABD和CBD关于直线BD对称(点A的对称点是点C),点E、F分别是线段BC 和线段BD上的点,且点F在线段EC的垂直平分线上,连接AF、AE,AE交BD于点G (1)如图l,求证:EAF=ABD; (2)如图2,当AB=AD时,M是线段AG上一点,连接BM、ED、MF,MF的延长线交ED于点N,MBF= BAF,AF=AD,试探究线段FM和FN之间的数量关系,并证明你的结论