1、2017年四川省达州市中考数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(3分)2的倒数是()A2B2C12D122(3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()ABCD3(3分)下列计算正确的是()A2a+3b=5abB36=6Ca3b2ab=12a2D(2ab2)3=6a3b54(3分)已知直线ab,一块含30角的直角三角尺如图放置若1=25,则2等于()A50B55C60D655(3分)某市从今年1月1日起调整居民用水价格,每立方米水费上涨13小丽家去年12月份的水费是15元,而今年5月的水费则是3
2、0元已知小丽家今年5月的用水量比去年12月的用水量多5cm3求该市今年居民用水的价格设去年居民用水价格为x元/cm3,根据题意列方程,正确的是()A30(1+13)x-15x=5B30(1-13)x-15x=5C30x-15(1+13)x=5D30x-15(1-13)x=56(3分)下列命题是真命题的是()A若一组数据是1,2,3,4,5,则它的方差是3B若分式方程4(x+1)(x-1)-mx-1=1有增根,则它的增根是1C对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D若一个角的两边分别与另一个角的两边平行,则这两个角相等7(3分)以半径为2的圆的内接正三角形、正方形、正六边形
3、的边心距为三边作三角形,则该三角形的面积是()A22B32C2D38(3分)已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是()ABCD9(3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90至图位置,继续绕右下角的顶点按顺时针方向旋转90至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A2017B2034C3024D302610(3分)已知函数y=&-12x(x0)&3x(x0)的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,
4、B两点,连接OA、OB下列结论:若点M1(x1,y1),M2(x2,y2)在图象上,且x1x20,则y1y2;当点P坐标为(0,3)时,AOB是等腰三角形;无论点P在什么位置,始终有SAOB=7.5,AP=4BP;当点P移动到使AOB=90时,点A的坐标为(26,6)其中正确的结论个数为()A1B2C3D4二、填空题(每题3分,满分18分,将答案填在答题纸上)11(3分)达州市莲花湖湿地公园占地面积用科学记数法表示为7.92106平方米则原数为 平方米12(3分)因式分解:2a38ab2= 13(3分)从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=6x图象上的概
5、率是 14(3分)ABC中,AB=5,AC=3,AD是ABC的中线,设AD长为m,则m的取值范围是 15(3分)甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动已知线段AB长为90cm,甲的速度为2.5cm/s设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为 (并写出自变量取值范围)16(3分)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作O与AD相切于点P若AB=6,BC=33,则下
6、列结论:F是CD的中点;O的半径是2;AE=92CE;S阴影=32其中正确结论的序号是 三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17(6分)计算:20170|12|+(13)1+2cos4518(6分)国家规定,中、小学生每天在校体育活动时间不低于1h为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生根据调查结果绘制成的统计图如图所示,其中A组为t0.5h,B组为0.5ht1h,C组为1ht1.5h,D组为t1.5h请根据上述信息解答下列问题:(1)本次调查数据的众数落在 组内,中位数落在 组内;(2)该辖区约有18000
7、名初中学生,请你估计其中达到国家规定体育活动时间的人数19(7分)设A=a-21+2a+a2(a3aa+1)(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);解关于x的不等式:x-227-x4f(3)+f(4)+f(11),并将解集在数轴上表示出来20(7分)如图,在ABC中,点O是边AC上一个动点,过点O作直线EFBC分别交ACB、外角ACD的平分线于点E、F(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由21(7分)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前
8、方直立着一警示牌当太阳光线与水平线成60角时,测得信号塔PQ落在斜坡上的影子QN长为25米,落在警示牌上的影子MN长为3米,求信号塔PQ的高(结果不取近似值)22(8分)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=&7.5x(0x4)&5x+10(4x14)(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?23(8分)如图,ABC内接于O,CD平分ACB
9、交O于D,过点D作PQAB分别交CA、CB延长线于P、Q,连接BD(1)求证:PQ是O的切线;(2)求证:BD2=ACBQ;(3)若AC、BQ的长是关于x的方程x+4x=m的两实根,且tanPCD=13,求O的半径24(11分)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:P1P2=(x2-x1)2+(y2-y1)2他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:x=x1+x22,y=y1+y22(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)已知点M(2,1),N(
10、3,5),则线段MN长度为 ;直接写出以点A(2,2),B(2,0),C(3,1),D为顶点的平行四边形顶点D的坐标: ;拓展:(3)如图3,点P(2,n)在函数y=43x(x0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使PEF的周长最小,简要叙述作图方法,并求出周长的最小值25(12分)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边BCD,连接AD交BC于E(1)直接回答:OBC与ABD全等吗?试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=A
11、EAD时,如图2,经过O、B、C三点的抛物线为y1试问:y1上是否存在动点P,使BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=3x+3m的图象l与M有公共点试写出:l与M的公共点为3个时,m的取值2017年四川省达州市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(3分)(2017达州)2的倒数是()A2B2C12D12【考点】17:倒数菁优网版权所有【分析】根据倒数的定义,若两个数的乘积是
12、1,我们就称这两个数互为倒数【解答】解:2(-12)=1,2的倒数是12故选D【点评】主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题2(3分)(2017达州)如图,几何体是由3个完全一样的正方体组成,它的左视图是()ABCD【考点】U2:简单组合体的三视图菁优网版权所有【分析】根据从左边看得到的图形是左视图,可得答案【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形,故选:B【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图3(3分)(2017达州)下列计算正确的是()A2a+3b=5abB36=6Ca3b2ab=12a2
13、D(2ab2)3=6a3b5【考点】4H:整式的除法;22:算术平方根;35:合并同类项;47:幂的乘方与积的乘方菁优网版权所有【分析】根据整式的运算法则以及二次根式的性质即可求出答案【解答】解:(A)2a与3b不是同类项,故A不正确;(B)原式=6,故B不正确;(D)原式=8a3b6,故D不正确;故选(C)【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型4(3分)(2017达州)已知直线ab,一块含30角的直角三角尺如图放置若1=25,则2等于()A50B55C60D65【考点】JA:平行线的性质菁优网版权所有【分析】由三角形的外角性质求出3=55,再由平行线的
14、性质即可得出2的度数【解答】解:如图所示:由三角形的外角性质得:3=1+30=55,ab,2=3=55;故选:B【点评】该题主要考查了平行线的性质、三角形的外角性质;牢固掌握平行线的性质是解决问题的关键5(3分)(2017达州)某市从今年1月1日起调整居民用水价格,每立方米水费上涨13小丽家去年12月份的水费是15元,而今年5月的水费则是30元已知小丽家今年5月的用水量比去年12月的用水量多5cm3求该市今年居民用水的价格设去年居民用水价格为x元/cm3,根据题意列方程,正确的是()A30(1+13)x-15x=5B30(1-13)x-15x=5C30x-15(1+13)x=5D30x-15(
15、1-13)x=5【考点】B6:由实际问题抽象出分式方程菁优网版权所有【分析】利用总水费单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5cm3,进而得出等式即可【解答】解:设去年居民用水价格为x元/cm3,根据题意列方程:30(1+13)x15x=5,故选:A【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键6(3分)(2017达州)下列命题是真命题的是()A若一组数据是1,2,3,4,5,则它的方差是3B若分式方程4(x+1)(x-1)-mx-1=1有增根,则它的增根是1C对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D若一个角的两边分别与
16、另一个角的两边平行,则这两个角相等【考点】O1:命题与定理菁优网版权所有【分析】利用方差的定义、分式方程的增根、菱形的判定及平行的性质分别判断后即可确定正确的选项【解答】解:A、若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题;B、若分式方程4(x+1)(x-1)-mx-1=1有增根,则它的增根是1或1,故错误,是假命题;C、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题;D、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题,故选C【点评】本题考查了命题与定理的知识,解题的关键是了解方差的定义、分式方程的增根、菱形的
17、判定及平行的性质等知识,难度不大7(3分)(2017达州)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A22B32C2D3【考点】MM:正多边形和圆菁优网版权所有【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积【解答】解:如图1,OC=2,OD=2sin30=1;如图2,OB=2,OE=2sin45=2;如图3,OA=2,OD=2cos30=3,则该三角形的三边分别为:1,2,3,(1)2+(2)2=(3)2,该三角形是直角三角形,该三角形的
18、面积是:1212=22故选:A【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键8(3分)(2017达州)已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是()ABCD【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象菁优网版权所有【分析】先根据二次函数的图象开口向下可知a0,再由函数图象经过y轴正半可知c0,利用排除法即可得出正确答案【解答】解:二次函数y=ax2+bx+c的图象开口向下可知a0,对称轴位于y轴左侧,a、b异号,
19、即b0图象经过y轴正半可知c0,由a0,b0可知,直线y=ax2b经过一、二、四象限,由c0可知,反比例函数y=cx的图象经过第一、三象限,故选:C【点评】本题考查的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键9(3分)(2017达州)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90至图位置,继续绕右下角的顶点按顺时针方向旋转90至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A2017B2034C3024D3026【考点】O4:轨迹;LB:矩形的性质;R2:旋转的性质菁优网版权所有
20、【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可【解答】解:AB=4,BC=3,AC=BD=5,转动一次A的路线长是:904180=2,转动第二次的路线长是:905180=52,转动第三次的路线长是:903180=32,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:52+32+2=6,20174=5041,顶点A转动四次经过的路线长为:6504+2=3026,故选D【点评】本题主要考查了探索规律问题和弧长公式的运用,掌握旋转变换的性质、灵活运用弧长的计算公式、发现规律是解决问题的关键10(3分)(2017达州)已知函数y=&-12x(
21、x0)&3x(x0)的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB下列结论:若点M1(x1,y1),M2(x2,y2)在图象上,且x1x20,则y1y2;当点P坐标为(0,3)时,AOB是等腰三角形;无论点P在什么位置,始终有SAOB=7.5,AP=4BP;当点P移动到使AOB=90时,点A的坐标为(26,6)其中正确的结论个数为()A1B2C3D4【考点】GB:反比例函数综合题菁优网版权所有【分析】错误因为x1x20,函数y随x是增大而减小,所以y1y2;正确求出A、B两点坐标即可解决问题;正确设P(0,m),则B(3m,m),A(12m,m)
22、,可得PB=3m,PA=12m,推出PA=4PB,SAOB=SOPB+SOPA=32+122=7.5;正确设P(0,m),则B(3m,m),A(12m,m),推出PB=3m,PA=12m,OP=m,由OPBAPO,可得OP2=PBPA,列出方程即可解决问题;【解答】解:错误x1x20,函数y随x是增大而减小,y1y2,故错误正确P(0,3),B(1,3),A(4,3),AB=5,OA=32+42=5,AB=AO,AOB是等腰三角形,故正确正确设P(0,m),则B(3m,m),A(12m,m),PB=3m,PA=12m,PA=4PB,SAOB=SOPB+SOPA=32+122=7.5,故正确正确
23、设P(0,m),则B(3m,m),A(12m,m),PB=3m,PA=12m,OP=m,AOB=90,OPB=OPA=90,BOP+AOP=90,AOP+OPA=90,BOP=OAP,OPBAPO,OPAP=PBOP,OP2=PBPA,m2=3m(12m),m4=36,m0,m=6,A(26,6),故正确正确,故选C【点评】本题考查反比例函数综合题、等腰三角形的判定、两点间距离公式、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程解决问题,属于中考选择题中的压轴题二、填空题(每题3分,满分18分,将答案填在答题纸上)11(3分)(2017达
24、州)达州市莲花湖湿地公园占地面积用科学记数法表示为7.92106平方米则原数为7920000平方米【考点】1K:科学记数法原数菁优网版权所有【分析】根据科学记数法,可得答案【解答】解:7.92106平方米则原数为7920000平方米,故答案为:7920000【点评】本题考查了科学记数法,n是几小数点向右移动几位12(3分)(2017达州)因式分解:2a38ab2=2a(a+2b)(a2b)【考点】55:提公因式法与公式法的综合运用菁优网版权所有【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用平方差公式继续分解【解答】解:2a38ab2=2a(a24b2)=2a
25、(a+2b)(a2b)故答案为:2a(a+2b)(a2b)【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解13(3分)(2017达州)从1,2,3,6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=6x图象上的概率是13【考点】G6:反比例函数图象上点的坐标特征;X6:列表法与树状图法菁优网版权所有【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=6x图象上的情况,再利用概率公式即可求得答案【解答】解:画树状图得:共有12种等
26、可能的结果,点(m,n)恰好在反比例函数y=6x图象上的有:(2,3),(1,6),(3,2),(6,1),点(m,n)在函数y=6x图象上的概率是:412=13故答案为:13【点评】此题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比14(3分)(2017达州)ABC中,AB=5,AC=3,AD是ABC的中线,设AD长为m,则m的取值范围是1m4【考点】KD:全等三角形的判定与性质;K6:三角形三边关系菁优网版权所有【分析】作辅助线,构建AEC,根据三角形三边关系得:ECACAEAC+EC,即532m5+3,所以1m4【解答】解:延长AD至E,使AD=DE,连接CE
27、,则AE=2m,AD是ABC的中线,BD=CD,在ADB和EDC中,&AD=DE&ADB=EDC&BD=CD,ADBEDC,EC=AB=5,在AEC中,ECACAEAC+EC,即532m5+3,1m4,故答案为:1m4【点评】本题考查了三角形三边关系、三角形全等的性质和判定,属于基础题,辅助线的作法是关键15(3分)(2017达州)甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动已知线段AB长为90cm,甲的速度为2.5cm/s设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为y
28、=4.5x90(20x36)(并写出自变量取值范围)【考点】FH:一次函数的应用菁优网版权所有【分析】图中线段DE所表示的函数关系式,实际上表示甲乙两人相遇后的路程之和与时间的关系【解答】解:观察图象可知,乙的速度=9045=2cm/s,相遇时间=902.5+2=20,图中线段DE所表示的函数关系式:y=(2.5+2)(x20)=4.5x90(20x36)故答案为y=4.5x90(20x36)【点评】本题考查一次函数的应用、路程、速度、时间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题16(3分)(2017达州)如图,矩形ABCD中,E是BC上一点,
29、连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作O与AD相切于点P若AB=6,BC=33,则下列结论:F是CD的中点;O的半径是2;AE=92CE;S阴影=32其中正确结论的序号是【考点】MC:切线的性质;LB:矩形的性质;MO:扇形面积的计算;PB:翻折变换(折叠问题)菁优网版权所有【分析】易求得DF长度,即可判定;连接OP,易证OPCD,根据平行线性质即可判定;易证AE=2EF,EF=2EC即可判定;连接OG,作OHFG,易证OFG为等边,即可求得S阴影即可解题;【解答】解:AF是AB翻折而来,AF=AB=6,AD=BC=33,DF=A
30、F2-AD2=3,F是CD中点;正确;连接OP,O与AD相切于点P,OPAD,ADDC,OPCD,AOAF=OPDF,设OP=OF=x,则x3=6-x6,解得:x=2,正确;RTADF中,AF=6,DF=3,DAF=30,AFD=60,EAF=EAB=30,AE=2EF;AFE=90,EFC=90AFD=30,EF=2EC,AE=4CE,错误;连接OG,作OHFG,AFD=60,OF=OG,OFG为等边;同理OPG为等边;POG=FOG=60,OH=32OG=3,S扇形OPG=S扇形OGF,S阴影=(S矩形OPDHS扇形OPGSOGH)+(S扇形OGFSOFG)=S矩形OPDH32SOFG=2
31、332(1223)=32正确;故答案为【点评】本题考查了矩形面积的计算,正三角形的性质,平行线平分线段的性质,勾股定理的运用,本题中熟练运用上述考点是解题的关键三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17(6分)(2017达州)计算:20170|12|+(13)1+2cos45【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值菁优网版权所有【专题】11 :计算题【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可【解答】解:20170|12|+(13)1+2cos45=12+1+3+222=52+2
32、=5【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用18(6分)(2017达州)国家规定,中、小学生每天在校体育活动时间不低于1h为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生根据调查结果绘制成的统计图如图所示,其中A组为t0.5h,B组为0.5ht1h,C组为1ht1.5h,D组为t1.5h请根据上述信息解答下列问题:(1)本次调查数据的众数落在B
33、组内,中位数落在C组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数【考点】V8:频数(率)分布直方图;V5:用样本估计总体;W4:中位数;W5:众数菁优网版权所有【分析】(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(2)首先计算样本中达到国家规定体育活动时间的频率,再进一步估计总体达到国家规定体育活动时间的人数【解答】解:(1)众数在B组根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故本次调查数据的中位数落在C组故答案是:B,C;(2)达国家规定体育活动时间的人数约1800100+603
34、00=960(人)答:达国家规定体育活动时间的人约有960人【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题19(7分)(2017达州)设A=a-21+2a+a2(a3aa+1)(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);解关于x的不等式:x-227-x4f(3)+f(4)+f(11),并将解集在数轴上表示出来【考点】6C:分式的混合运算;C4:在数轴上表示不等式的解集;C6:解一元一次不等式菁优网版权所有【分析】(1)根据分式的除法和减法可以解答
35、本题;(2)根据(1)中的结果可以解答题目中的不等式并在数轴上表示出不等式的解集【解答】解:(1)A=a-21+2a+a2(a3aa+1)=a-2(a+1)2a(a+1)-3aa+1=a-2(a+1)2a+1a2-2a=a-2(a+1)2a+1a(a-2)=1a(a+1)=1a2+a;(2)a=3时,f(3)=132+3=112,a=4时,f(4)=142+4=120,a=5时,f(5)=152+5=130,x-227-x4f(3)+f(4)+f(11),即x-227-x4134+145+11112x-227-x413-14+14-15+111-112,x-227-x413-112,x-227
36、-x414,解得,x4,原不等式的解集是x4,在数轴上表示如下所示,【点评】本题考查分式的混合运算、在数轴表示不等式的解集、解一元一次不等式,解答本题的关键是明确分式的混合运算的计算方法和解不等式的方法20(7分)(2017达州)如图,在ABC中,点O是边AC上一个动点,过点O作直线EFBC分别交ACB、外角ACD的平分线于点E、F(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由【考点】LC:矩形的判定;JA:平行线的性质;KJ:等腰三角形的判定与性质菁优网版权所有【分析】(1)根据平行线的性质以及角平分线的性质
37、得出OEC=OCE,OFC=OCF,证出OE=OC=OF,ECF=90,由勾股定理求出EF,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可【解答】(1)证明:EF交ACB的平分线于点E,交ACB的外角平分线于点F,OCE=BCE,OCF=DCF,MNBC,OEC=BCE,OFC=DCF,OEC=OCE,OFC=OCF,OE=OC,OF=OC,OE=OF;OCE+BCE+OCF+DCF=180,ECF=90,在RtCEF中,由勾股定理得:EF=CE2+CF2=10,OC=OE=12EF=5;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形理由如下:连接AE、AF,
38、如图所示:当O为AC的中点时,AO=CO,EO=FO,四边形AECF是平行四边形,ECF=90,平行四边形AECF是矩形【点评】此题主要考查了矩形的判定、平行线的性质、等腰三角形的判定、勾股定理、平行四边形的判定和直角三角形的判定等知识,根据已知得出ECF=90是解题关键21(7分)(2017达州)如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌当太阳光线与水平线成60角时,测得信号塔PQ落在斜坡上的影子QN长为25米,落在警示牌上的影子MN长为3米,求信号塔PQ的高(结果不取近似值)【考点】T9:解直角三角形的应用坡度坡角问题;U5:平行投影菁优网版权所有【分析】如图作M
39、FPQ于F,QEMN于E,则四边形EMFQ是矩形分别在RtEQN、RtPFM中解直角三角形即可解决问题【解答】解:如图作MFPQ于F,QEMN于E,则四边形EMFQ是矩形在RtQEN中,设EN=x,则EQ=2x,QN2=EN2+QE2,20=5x2,x0,x=2,EN=2,EQ=MF=4,MN=3,FQ=EM=1,在RtPFM中,PF=FMtan60=43,PQ=PF+FQ=43+1【点评】本题考查了解直角三角形的应用坡度问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型22(8分)(2017达州)宏兴企业接到一批产品的生产任务,按要求必须在14
40、天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=&7.5x(0x4)&5x+10(4x14)(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?【考点】HE:二次函数的应用菁优网版权所有【分析】(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润销售量”列出函数解析式,由二次函数的性质求得最值即可【解答】解:(1)根据题意,得:若7.5x
41、=70,得:x=2834,不符合题意;5x+10=70,解得:x=12,答:工人甲第12天生产的产品数量为70件;(2)由函数图象知,当0x4时,P=40,当4x14时,设P=kx+b,将(4,40)、(14,50)代入,得:&4k+b=40&14k+b=50,解得:&k=1&b=36,P=x+36;当0x4时,W=(6040)7.5x=150x,W随x的增大而增大,当x=4时,W最大=600元;当4x14时,W=(60x36)(5x+10)=5x2+110x+240=5(x11)2+845,当x=11时,W最大=845,845600,当x=11时,W取得最大值,845元,答:第11天时,利润
42、最大,最大利润是845元【点评】本题考查一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价成本,学会利用函数的性质解决最值问题23(8分)(2017达州)如图,ABC内接于O,CD平分ACB交O于D,过点D作PQAB分别交CA、CB延长线于P、Q,连接BD(1)求证:PQ是O的切线;(2)求证:BD2=ACBQ;(3)若AC、BQ的长是关于x的方程x+4x=m的两实根,且tanPCD=13,求O的半径【考点】S9:相似三角形的判定与性质;B2:分式方程的解;M5:圆周角定理;ME:切线的判定与性质;T7:解直角三角形菁优网版权所有【分析】(1)根据平行线的性质和圆周角定理得到ABD=BDQ=ACD,连接OB,OD,交AB于E,根据圆周角定理得到OBD=ODB,O=2DCB=2BDQ,根据三角形的内角和得到2ODB+2O=180,于是得到ODB+O=90,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;(3)根据题意得到ACBQ=4,得到BD=2,由(1)