收藏 分销(赏)

人教版七年级下册数学期末测试试卷(附答案).doc

上传人:人****来 文档编号:4914870 上传时间:2024-10-20 格式:DOC 页数:23 大小:498.04KB
下载 相关 举报
人教版七年级下册数学期末测试试卷(附答案).doc_第1页
第1页 / 共23页
人教版七年级下册数学期末测试试卷(附答案).doc_第2页
第2页 / 共23页
人教版七年级下册数学期末测试试卷(附答案).doc_第3页
第3页 / 共23页
人教版七年级下册数学期末测试试卷(附答案).doc_第4页
第4页 / 共23页
人教版七年级下册数学期末测试试卷(附答案).doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、人教版七年级下册数学期末测试试卷(附答案)一、选择题1如图,直线截、分别交于、两点,则的同位角是( )ABCD2下列现象中,()是平移A“天问”探测器绕火星运动B篮球在空中飞行C电梯的上下移动D将一张纸对折3在平面直角坐标系中,点位于( )A第一象限B第二象限C第三象限D第四象限4下列四个命题:5是25的算术平方根;的平方根是-4;经过直线外一点,有且只有一条直线与这条直线平行;同旁内角互补其中真命题的个数是( )A0个B1个C2个D3个5如图,点在的延长线上,能证明是( )ABCD6若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是( )A9B3C2D97如图,交于点,平分,

2、则的度数为( )A60B55C50D458如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点(1,0)、(2,0)、(2,1)(1,1)、(1,2)、(2,2).根据这个规律,第2021个点的坐标为()A(45,4)B(45,9)C(45,21)D(45,0)九、填空题9的算术平方根为_十、填空题10点(3,0)关于y轴对称的点的坐标是_十一、填空题11如图,分别作和的角平分线交于点,称为第一次操作,则_;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则_十二、填空题12如图,直线,被直线所截,则_十三、填空题13如图1是的一张纸条,按

3、图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为_十四、填空题14对于任意有理数a,b,规定一种新的运算aba(a+b)1,例如,252(2+5)113则(2)6的值为_十五、填空题15点关于轴的对称点的坐标是_十六、填空题16如图,在平面直角坐标系中:A(1,1),B(1,1),C(1,3),D(1,3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是_十七、解答题17计算:(1) (2)十八、解答题18求下列各式中x的值:(1)(x+1)327

4、0(2)(2x1)2250十九、解答题19如图已知12,CD,求证:AF(1)请把下面证明过程中序号对应的空白内容补充完整证明:12(已知)又1DMN( )2DMN(等量代换)DBEC( )DBCC180( )CD(已知),DBC( )180(等量代换)DFAC( )AF( )(2)在(1)的基础上,小明进一步探究得到DBCDEC,请帮他写出推理过程二十、解答题20已知点P(3a4,a+2)(1)若点P在y轴上,试求P点的坐标;(2)若M(5,8),且PM/x轴,试求P点的坐标;(3)若点P到x轴,y轴的距离相等,试求P点的坐标二十一、解答题21已知的平方根是的立方根是是的整数部分,求的算术平

5、方根二十二、解答题22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和二十三、解答题23如图,直线AB直线CD,线段EFCD,连接BF、CF(1)求证:ABF+DCFBFC;(2)连接BE、CE、BC,若BE平分ABC,BECE,求证:CE平分BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若BFCBCF,FBG2ECF,CBG70,求FBE的度数二十四、解答题24已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,AMPPQN,PQ

6、平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEPN交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由二十五、解答题25阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内

7、角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数【参考答案】一、选择题1B解析:B【分析】根据同位角的定义:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被

8、截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.【详解】解:如图所示,1的同位角为3,故选B.【点睛】本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.2C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不解析:C【分析】根据平移的定义,对选项进行一一分析,排除错误答案在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移【详解】解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意

9、; B. 篮球在空中飞行不是平移,故此选项不符合题意;C. 电梯的上下移动是平移,故此选项符合题意; D. 将一张纸对折不是平移,故此选项不符合题意故选:C【点睛】本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别3B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可【详解】解:解:在平面直角坐标系中,点P(2,1)位于第二象限,故选:B【点睛】本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限4C【分析】根据相关概念逐项分析即可【详解】5是25的算术平方根,故原命题是真命题;的平方根是,故原命题是假命题;经过直线外一点,有且只有一条直线与这条直线平行,故原命题是

10、真命题;两直线平行,同旁内角互补,故原命题是假命题;故选:C【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键5D【分析】由题意根据平行线的判定定理对四个选项进行逐一分析即可【详解】解:A. ,能证ADBC,故此选项错误;B. ,不能证明,故此选项错误;C. ,不能证明,故此选项错误;D. ,能证明,故此选项正确.故选:D.【点睛】本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角6B【分析】根据立方根与平方根的定义即可求出答案【详解】解:由题意可知:2m+6+m180,m4,

11、5m+727,27的立方根是3,故选:B【点睛】考核知识点:平方根、立方根理解平方根、立方根的定义和性质是关键7C【分析】根据两直线平行的性质定理,进行角的转换,再根据平角求得,进而求得【详解】, 又,平分,故选:C【点睛】本题主要考查的是平行线的性质,角平分线的定义等知识点,根据条件数形结合是解题切入点8A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个解析:A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐

12、标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点,【详解】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点,第2025个点是(45,0),2021个点的坐标是(45,4);故选:A【点睛】本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键九、填空题94【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】

13、本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与平方根的区别.十、填空题10(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可【详解】解:点(m,n)

14、关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0)故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题1190 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算E解析:90 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1

15、Q,CFP1=FP1Q,结合角平分线的定义可计算EP1F,再同理求出P2,P3,总结规律可得【详解】解:过P1作P1QAB,则P1QCD,ABCD,AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,和的角平分线交于点,EP1F=EP1Q+FP1Q=AEP1+CFP1=(AEF+CFE)=90;同理可得:P2=(AEF+CFE)=45,P3=(AEF+CFE)=22.5,.,故答案为:90,【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解十二、填空题12100【分析】先根据平行线的性质得出3=

16、80,再由邻补角得到2=100【详解】如图,3=80,又2+3=180,2=180-3=180-8解析:100【分析】先根据平行线的性质得出3=80,再由邻补角得到2=100【详解】如图,3=80,又2+3=180,2=180-3=180-80=100故答案为:100【点睛】此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键十三、填空题13113【分析】如图,设BFEx,根据折叠的性质得BFEBFEx,AEFAEF,则BFCx21,再由第2次折叠得到CFBBFCx21,于是利用平角定解析:113【分析】如图,设BFEx,根据折叠的性质得BFEBFEx,AEFAEF,则BF

17、Cx21,再由第2次折叠得到CFBBFCx21,于是利用平角定义可计算出x67,接着根据平行线的性质得AEF180BFE113,所以AEF113【详解】解:如图,设BFEx,纸条沿EF折叠,BFEBFEx,AEFAEF,BFCBFECFEx21,纸条沿BF折叠,CFBBFCx21,而BFE+BFE+CFE180,x+x+x21180,解得x67,ADBC,AEF180BFE18067113,AEF113故答案为113【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等解决本题的关键是画出折叠前后得图形十四、填空题14-9【分

18、析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.十五、填空题15【分析】根据点关于轴的对称点的坐标的特征,即可写出答案【详解】解:点关于轴的对称点为,点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:解析:【分析】根据点关于轴的对称点的坐标的特征,即可写出答案【详解】解:点关于轴的对称

19、点为,点的纵坐标与点的纵坐标相同,点的横坐标是点的横坐标的相反数,故点的坐标为:,故答案为:【点睛】本题考查了与直角坐标系相关的知识,理解点关于轴的对称点的坐标的特征(纵坐标相等,横坐标是其相反数)是解题的关键十六、填空题16【分析】先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题【详解】解:A(1,1),B(1,1),C(1,3),D(1,3),四边形ABCD的周长为2+4+2+4=解析:【分析】先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题【详解】解:A(1,1),B(1,1),C(1,3),D(1,3),四边形ABCD的周长为2+4+2+4=12,细线另

20、一端所在位置的点在B点的下方3个单位的位置,即点的坐标故答案为:【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型十七、解答题17(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解:原式 =【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个

21、数的立方根,求一个数的绝对值,掌握以上知识是解题的关键十八、解答题18(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=5,x=3或x=-2【点睛】本题考查了立方根和平方根,熟练掌握立方根和平

22、方根的定义是解题的关键十九、解答题19(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到2=DMN,由此判定DBEC,由平行线的性质及等量代换得出DBC+D=180即可判定DFAC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到2=DMN,由此判定DBEC,由平行线的性质及等量代换得出DBC+D=180即可判定DFAC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解【详解】解:(1)证明:1=2(已知),又1=DMN(对顶角相等),2=DMN(等量代换),DBEC(同位角相等,两直线平行 ),DBC+C=180(

23、 两直线平行,同旁内角互补),C=D(已知),DBC+(D)=180(等量代换),DFAC( 同旁内角互补,两直线平行),A=F(两直线平行,内错角相等 )(2)DBEC,DBC+C=180,DEC+D=180,C=D,DBC=DEC【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键二十、解答题20(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1)【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1

24、)【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案;(3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案【详解】(1)点P在y轴上,P(0,)(2)PM/x轴,此时,P(-22,8)(3)若点P到x轴,y轴的距离相等,或,解得:或,当时,3a4=,a+2=,P(,),当时,3a4=-1,a+2=1,P(-1,1),综上所述:P(,)或P(-1,1)【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质二十一、解

25、答题21【分析】首先根据平方根与立方根的概念可得2a1与a3b1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a2bc,根据算术平方根的求法可得答案【详解】解:根据题意,解析:【分析】首先根据平方根与立方根的概念可得2a1与a3b1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a2bc,根据算术平方根的求法可得答案【详解】解:根据题意,可得2a19, a3b1-8;解得:a5,b-4;又67,可得c6;a2bc3;a2bc的算术平方根为【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法二十二、解答题

26、22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,

27、以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键二十三、解答题23(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3

28、)由(1)的结论和三角形的角的关系解答即可【详解】证明:(1)ABCD,EFCD,ABEF,ABFBFE,EFCD,DCFEFC,BFCBFE+EFCABF+DCF;(2)BEEC,BEC90,EBC+BCE90,由(1)可得:BFCABE+ECD90,ABE+ECDEBC+BCE,BE平分ABC,ABEEBC,ECDBCE,CE平分BCD;(3)设BCE,ECF,CE平分BCD,DCEBCE,DCFDCEECF,EFC,BFCBCF,BFCBCE+ECF+,ABFBFE2,FBG2ECF,FBG2,ABE+DCEBEC90,ABE90,GBEABEABFFBG9022,BE平分ABC,CBE

29、ABE90,CBGCBE+GBE,7090+9022,整理得:2+55,FBEFBG+GBE2+902290(2+)35【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答二十四、解答题24(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(

30、2)和已知条件可得QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,ABCDPR,AMPMPR,PQNRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQNPQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF180,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQ

31、N,NQEPQN+EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(1803)18090+2390+AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键二十五、解答题25(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分

32、析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当1

33、8010872的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, DEFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBCDB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服