1、人教版七年级下册数学期末测试试卷及答案一、选择题19的算术平方根是()ABC3D-32下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3在平面直角坐标系中,点(1,+1)一定在()A第一象限B第二象限C第三象限D第四象限4下列四个命题:5是25的算术平方根;的平方根是-4;经过直线外一点,有且只有一条直线与这条直线平行;同旁内角互补其中真命题的个数是( )A0个B1个C2个D3个5如图,直线,被直线所截,则的度数为( )A40B60C45D706若a216,2,则a+b的值为()A12B4C12或4D12或47如图,将OAB绕点O逆时针旋
2、转55后得到OCD,此时,若,则的度数是( )A20B25C30D358在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上向右向下向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,第次移动到点,则点的坐标是( )ABCD九、填空题9已知=2.493, =7.882,则=_十、填空题10点关于轴对称的点的坐标为_十一、填空题11如图,在中,.三角形的外角和的角平分线交于点E,则_度.十二、填空题12将直角三角板与两边平行的纸条如图放置,若,则_十三、填空题13如图,在ABC中,将B、C按如图所示的方式折叠,点B、C均落于边BC上
3、的点Q处,MN、EF为折痕,若A=82,则MQE= _十四、填空题14对于有理数a,b,规定一种新运算:ab=ab+b,如23=23+3=9下列结论:(3)4=8;若ab=ba,则a=b;方程(x4)3=6的解为x=5;(ab)c=a(bc)其中正确的是_(把所有正确的序号都填上)十五、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_十六、填空题16如图,在平面直角坐标系中,轴,轴,点、在轴上,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的
4、边上,则细线的另一端所在位置的点的坐标_十七、解答题17计算下列各式的值:(1) (2)十八、解答题18求下列各式中的值:(1);(2);(3)十九、解答题19如图,BD平分ABC,F在AB上,G在AC上,FC与BD相交于点H,34180,试说明12(请通过填空完善下列推理过程)解:34180(已知),FHD4( )3FHD180(等量代换)FGBD( )1 (两直线平行,同位角相等)BD平分ABC,ABD (角平分线的定义)12(等量代换)二十、解答题20在平面直角坐标系中有三个点、B(5,1)、,是的边上任意一点,经平移后得到,点的对应点为,(1)点到轴的距离是 个单位长度;(2)画出和;
5、(3)求的面积二十一、解答题21例如即,的整数部分为2,小数部分为,仿照上例回答下列问题;(1)介于连续的两个整数a和b之间,且ab,那么a ,b ;(2)x是的小数部分,y是的整数部分,求x ,y ;(3)求的平方根二十二、解答题22(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为正方形的周长为,则_(填“”,或“”,或“”)(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?二十三、解答题23如
6、图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由二十四、解答题24为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30
7、秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由二十五、解答题25已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD
8、于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值【参考答案】一、选择题1C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可【详解】解:9的算术平方根是3,故选C【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥
9、皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3B【分析】根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答【详解】解:0,+10,点(-1,+1)一定在第二象限,故选B【点睛】
10、本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4C【分析】根据相关概念逐项分析即可【详解】5是25的算术平方根,故原命题是真命题;的平方根是,故原命题是假命题;经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;两直线平行,同旁内角互补,故原命题是假命题;故选:C【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键5A【分析】根据平行线的性质得出2D,进而利用邻补角得出答案即可【详解】解
11、:如图,ABCD,2D,1140,D2180118014040,故选:A【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答6D【分析】根据平方根和立方根的意义求出a、b即可【详解】解:a216,a4,2,b8,a+b4+8或4+8,即a+b12或4故选:D【点睛】本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个7D【分析】由旋转的性质得出AOC55,AC,根据平行线的性质得出BOCC35,则可得出答案【详解】解:将OAB绕点O逆时针旋转55后得到OCD,AOC55,AC,AOB20,BOCAOCAOB5
12、52035,CDOB,BOCC35,A35,故选:D【点睛】本题考查了旋转的性质,平行线的性质,求出BOC的度数是解题的关键8B【分析】根据题意可得 , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,可得:,即可求解【详解】解:由题意得: ,解析:B【分析】根据题意可得 , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,可得:,即可求解【详解】解:由题意得: , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环, ,点的纵坐标为1,由此得:,故选:B【点睛】本题主要考查了平面直角坐标系中点
13、的坐标规律题坐标与旋转,解题的关键是理解题意找出规律解答问题九、填空题993 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍
14、,则算术平方根就缩小10倍.十、填空题10【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握解析:【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解【详解】解:由点关于轴对称点的坐标为:,故答案为【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键十一、填空题11【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答
15、案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题1236【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解【详解】,故答案为:【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的
16、性质是解题关键解析:36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解【详解】,故答案为:【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键十三、填空题13【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质解析:【分析】根据折叠的性质得到,再根据的度数即可求出的度数,再根据求解即可【详解】解:折叠,故答案是:【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质十四、填空题14【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=3
17、4+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若解析:【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若ab,则两式不相等,所以错误;方程(x4) )3=6化为3(x4)+3=6,解得x=5,所以正确;左边=(ab) c=(ab+b) )c=(ab+b)c+c=abc+bc+c右边=a(bc)=a(bc+c)=a(bc+c) +(bc+c)=abc+ac+bc+c2两式不相等,所以错误综上所述,正确的说法有故答案为.【点睛】有理数的混合运算, 解一元一次方程
18、,属于定义新运算专题,解决本题的关键突破口是准确理解新定义本题主要考查学生综合分析能力、运算能力十五、填空题15【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计
19、算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形十六、填空题16【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题【详解】解:, “凸”形的周长为20,又的余数为1,细线另一端所在位置的点在的中点处,坐标为故解析:【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题【详解】解:, “凸”形的周长为20,又的余数为1,细线另一端所在位置的点在的中点处,坐标为故答案为:【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型十七、解答题17(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的
20、分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键十八、解答题18(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2);(3)5【分析
21、】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值【详解】解:(1)x3=0.008,则x=0.2;(2)x3-3= 则x3=3+故x3=解得:x=;(3)(x-1)3=64则x-1=4,解得:x=5【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键十九、解答题19对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,解析:对顶角相等,FHD,同旁内角互补,
22、两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,根据角平分线的定义得出ABD=2即可【详解】解:3+4=180(已知),FHD=4(对顶角相等), 3+FHD=180(等量代换), FGBD(同旁内角互补,两直线平行), 1=ABD(两直线平行,同位角相等), BD平分ABC, ABD=2(角平分线的定义), 1=2(等量代换), 故答案为:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判
23、定定理进行推理是解此题的关键二十、解答题20(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B1、C1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解【详解】(1)点到轴的距离是2个单位长度故答案为:2;
24、(2)如图,和为所求作(3)S6111.52.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(解析:(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(2),的小数部分为:,的整数部分为:3;故答案是:;(3),的平方根为:【点睛】本题考查了
25、估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出二十二、解答题22(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1c
26、m,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,设大正方形的边长为xcm, , 大正方形的边长为cm;(2)设圆的半径为r,由题意得,设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:正方形的面积为900cm2,正方形的边长为30cm长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,长方形纸片的长大于正方形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查二十三、解答题23(1)ABC100;(2)ABCAFC;(3)N90HAP
27、;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后解析:(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角
28、形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,P
29、N平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点二十四、解答题24(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设
30、A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN
31、=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,当0t90时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-
32、BAC=180-t,而ACD=126,BCD=126-BCA=126-(180-t)=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补二十五、解答题25(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分
33、析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论【详解】解:(1)直线l2l1,l3l1,l2l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)CE平分BCD,BCEDCEBCD,BCD70,DCE35,l2l3,CEDDCE35,l2l1,CAD90,ADC907020;故答案为:35,20;(3)CF平分BCD,BCFDCF,l2l1,CAD90,BCF+AGC90,CDBD,DCF+CFD90,AGCCFD,AGCDGF,DGFDFG;(4)N:BCD的值不会变化,等于;理由如下:l2l3,BEDEBH,DBEDEB,DBEEBH,DBH2DBE,BCD+BDCDBH,BCD+BDC2DBE,N+BDNDBE,BCD+BDC2N+2BDN,DN平分BDC,BDC2BDN,BCD2N,N:BCD【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键