资源描述
苏教版小学数学小升初难题精选易错题总结优质附答案
一、小学数学小升初难题精选
1.已知A是B的,B是C的,若A+C=55,则A= .
2.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:
(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?
(2)当A转动一圈时,C转动了几圈?
3.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.
请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?
4.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长 米.
5.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是 .
6.被11除余7,被7除余5,并且不大于200的所有自然数的和是 .
7.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款 元.
8.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是 平方厘米.
9.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是 %.
10.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有 个.
11.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是 .
12.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为 .
13.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有 个点.
14.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是 元,李华共买了 件.
15.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是 .
16.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是 度.
17.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .
18.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO= 度.
19.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是 平方厘米.
20.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是 立方分米.
21.若(n是大于0的自然数),则满足题意的n的值最小是 .
22.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有 页.
23.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用 天.
24.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距 千米.
25.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距 千米.
26.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备 面旗子.
27.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的 %,一枚重60克的鸡蛋中,最接近32克的组成部分是 .
28.定义新运算“*”:a*b=
例如3.5*2=3.5,1*1.2=1.2,7*7=1,则 = .
29.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长 米,井深 米.
30.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是 cm.
31.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是 数(填“奇”或“偶”).
32.从12点开始,经过 分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是 .
33.分子与分母的和是2013的最简真分数有 个.
34.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是 .
35.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B是AE的中点,那么阴影部分的周长是 m,面积是 m2(圆周率π取3).
36.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有 枚.
37.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是 .
38.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要 秒.
39.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要 天.
40.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是 ,体积是 .(π取3)
41.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?
42.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是 .
43.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距 千米.
44.对任意两个数x,y,定义新的运算*为: (其中m是一个确定的数).如果,那么m= ,2*6= .
45.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是 平方厘米.
46.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是 点 分.
47.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有 227 张邮票,小林原有 张邮票.
48.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m= ,3*12= .
49.如图所示的“鱼”形图案中共有 个三角形.
50.A、B、C、D四个箱子中分别装有一些小球,现将A 箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是 箱,其中装有 小球个.
【参考答案】
一、小学数学小升初难题精选
1.解:A是C的×=,
即A=C,
A+C=55,则:
C+C=55
C=55
C=55÷
C=40
A=40×=15
故答案为:15.
2.解:(1)如图,
答:当A匀速顺时针转动,C是顺时针转动.
(2)A:B:C=15:10:5=3:2:1
答:当A转动一圈时,C转动了3圈.
3.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)
接水口的面积为:10×30=300(平方厘米)
接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)
所以,图①需要:10×10×30÷(10×10×10)=3(小时)
图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)
图③需要:2÷2=1(厘米)
3.14×1×1×20÷(3.14×1×10)=2(小时)
答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.
4.解:第二次剪求的占全长的:
(1)×30%
=
=,
0.4÷[(1)]
=0.4÷[]
=
=0.4×15
=6(米);
答:这根绳子原来长6米.
故答案为:6.
5.解:
=
=,
答:这三个分数中最大的一个是.
故答案为:.
6.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;
不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;
同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;
满足条件不大于200的所有自然数的和是:40+117+194=351.
故答案为:351.
7.解:捐50元人数的分率为:1﹣=,
(200×+100×+50×)÷1
=(20+75+7.5)÷1
=102.5(元)
答:该公司人均捐款102.5元.
故答案为:102.5.
8.解:先求出一份的长:
(5+3)÷(5﹣3)
=8÷2
=4(厘米)
长是:4×5=20(厘米)
宽是:4×3=12(厘米)
原来的面积是:
20×12=240(平方厘米);
答:原来长方形的面积是240平方厘米.
故答案为:240.
9.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:
=50%.
答:她得60分或60分以上的概率是50%.
故答案为:50%.
10.解:因为1024=210=8×8×16
(8﹣2)×(8﹣2)×(16﹣2)
=6×6×14
=504
答:六个面都没有涂色的小正方体最多有504个.
故答案为:504.
11.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.
由题意得 方程组,解方程组得,
所以△ABC与△DEF的面积和是:
AB•CM+DE•FN=×2×8+×5×6=8+15=23.
故答案为:23.
12.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);
因为1+2+3+…+100=(1+100)×100÷2=5050,
所以A100记为(5050,5050);
故答案为:A100记为(5050,5050).
13.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;
故答案为:111.
14.解:189=3×3×3×7=27×7
147=3×7×7=21×7
正好是27×7=189中把27看成21×7=147
所以这种商品的实际单价是21元,卖了7件.
故答案为:21,7.
15.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:
①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;
②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;
③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,
综上,n最小是1009.
故答案是:1009.
16.解:180°×
=180°×
=90°
答:角度最大可以是 90度.
故答案为:90.
17.解:设原来的分数x是,则:
=
则:b=3(c+a)=3c+3a①
=
则:4c=a+b②
①代入②可得:
4c=a+3c+3a
4c=4a+3c
则:c=4a③
③代入①可得:
b=3c+3a=3×4a+3a=15a
所以==
即x=.
故答案为:.
18.解:沿DE折叠,所以AD=OD,同理可得BC=OC,
则:OD=DC=OC,
△OCD是等边三角形,
所以∠DCO=60°,
∠OCB=90°﹣60°=30°;
由于是对折,所以CF平分∠OCB,
∠BCF=30°÷2=15°
∠BFC=180°﹣90°﹣15°=75°
所以∠EFO=180°﹣75°×2=30°.
故答案为:30.
19.解:10=80(平方厘米)
答:兔子图形的面积是80平方厘米.
故答案为:80.
20.解:依题意可知:
将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.
10米=100分米.
体积为:10×100=1000(立方分米).
故答案为:1000
21.解:当n=1时,不等式左边等于,小于,不能满足题意;
当n=2时,不等式左边等于+==,小于,不能满足题意;
同理,当n=3时,不等式左边大于,能满足题意;
所以满足题意的n的值最小是3.
故答案是:3
22.解:设这本书的页码是从1到n的自然数,正确的和应该是
1+2+…+n=n(n+1),
由题意可知,n(n+1)>4979,
由估算,当n=100,n(n+1)=×100×101=5050,
所以这本书有100页.
答:这本书共有100页.
故答案为:100.
23.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,
(1﹣)÷[÷6÷35×(6+6)]
=÷(÷6÷35×12)
=÷
=35(天)
35+35=70(天)
答:完成这项工程共用70天.
故答案为:70.
24.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.
设总路程为x千米,得:
(x×+x×)﹣(x×+x×)=
x﹣x=
x=
x=330
答:王老师家与A地相距330千米.
故答案为:330.
25.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;
第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,
相遇地点离A地的距离为AB两地距离的,
第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,
相遇地点离A地的距离为AB两地距离的2﹣=,
所以,AB两地的距离为:
50÷()
=50÷
=100(千米)
答:A、B两地相距100千米.
故答案为:100.
26.解:400和90的最小公倍数是3600,
则3600÷90=40(面).
答:小明要准备40面旗子.
故答案为:40.
27.解:(1)1﹣32%﹣53%,
=1﹣85%,
=15%;
答:蛋壳重量占鸡蛋重量的15%.
(2)蛋黄重量:60×32%=19.2(克),
蛋白重量:60×53%=31.8(克),
蛋壳重量:60×15%=9(克),
所以最接近32克的组成部分是蛋白.
答:最接近32克的组成部分是蛋白.
故答案为:15,蛋白.
28.解:根据分析可得,
,
=,
=2;
故答案为:2.
29.解:(9×2﹣2×3)÷(3﹣2),
=(18﹣6)÷1,
=12÷1,
=12(米),
(12+9)×2,
=21×2,
=42(米).
故答案为:42,12.
30.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);
答:沙子的高度为11厘米.
故答案为:11.
31.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;
所以一个学生得分是:
25+3x+y﹣z,
=25+3x+y﹣(20﹣x﹣y),
=5+4x+2y;
4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;
2013个奇数相加的和仍是奇数.
所以所有参赛学生得分的总和是奇数.
故答案为:奇.
32.解:分针每分钟走的度数是:
360÷60=6(度),
时针每分钟走的度数是:
6×5÷60=0.5(度),
第一成直角用的时间是:
90÷(6﹣0.5),
=90÷5.5,
=16(分钟),
第二次成直角用的时间是:
270÷(6﹣0.5),
=270÷5.5,
=49(分钟).
这时的时刻是:
12时+49分=12时49分.
故答案为:16,12时49分.
33.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.
[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,
[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,
1006﹣335﹣91﹣16+30+5+1=600.
故答案为:600.
34.解:长方体的高是:
56÷4÷(1+2+4),
=14÷7,
=2,
宽是:2×2=4,
长是:4×2=8,
体积是:8×4×2=64,
答:这个长方体的体积是64.
故答案为:64.
35.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,
=4+6+3,
=13(米);
阴影部分的面积:3×42÷4+3×22÷4﹣2×4,
=12+3﹣8,
=7(平方米);
答:阴影部分的周长是13米,面积是7平方米.
故答案为:13、7.
36.解:因为0.60元=60分,
设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,
把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,
因为35是奇数,所以y必须是奇数,
当y=1时,z的值不是整数,
当y=3时,z=8,
所以z=8;
答:5分的硬币最多有8枚;
故答案为:8.
37.解:A:B
=1:4
=:
=(×6):(×6)
=10:29
C:A
=2:3
=:
=(×15):(×15)
=33:55
=3:5
=6:10
这样A的份数都是10,
所以A:B:C=10:29:6.
故答案为:10:29:6.
38.解:(125+115)÷(22+18)
=240÷40
=6(秒);
答:从两车头相遇到车尾分开需要6秒钟.
故答案为:6.
39.解:(1﹣)÷[(1+20%)×80%]
=÷[120%×80%],
=,
=;
185÷(+)
=185÷,
=180(天).
答:按原速度建完,则需要180天.
故答案为:180.
40.解:10×10×6﹣3×22×2+2×3×2×10,
=600﹣24+120
=696;
10×10×10﹣3×22×10,
=1000﹣120
=880;
答:得到的几何体的表面积是696,体积是880.
故答案为:696,880.
41.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,
可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,
200×=90(票)
200×=60(票)
200×=50(票)
答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.
42.解:商是10,除数最大是9,余数最大是8,
9×10+8=98;
被除数最大是98.
故答案为:98.
43.解:慢车行完全程需要:
5×(1+),
=5×,
=6(小时);
全程为:
40÷[1﹣(+)×2],
=40÷[1﹣],
=40÷,
=40×,
=150(千米);
答:甲乙两地相距150千米.
故答案为:150.
44.解:(1)1*2==,
即2m+8=10,
2m=10﹣8,
2m=2,
m=1,
(2)2*6,
=,
=,
故答案为:1,.
45.解:1×2=2(平方厘米);
答:六瓣花形阴影部分的面积是2平方厘米.
故答案为:2.
46.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.
故答案为:4,50.
47.解:(1﹣):1=13:19,13+19=32;
1:(1﹣)=17:11,17+11=28,
32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,
448÷32×13=182,448÷28×17=272.
小强:(182+272)÷2=227张
小林:448﹣227=221.
故答案为:227,221.
48.解:①因为:
x*y=(其中m是一个确定的数)
且1*2=1
所以:
=1
8=m+6
m+6=8
m+6﹣6=8
m=2
②3*12
=
=
=
故答案为:2,.
49.解:由一个三角形组成:14个;
由两个三角形组成:8个;
由三个三角形组成:8个;
由四个三角形组成:4个;
由六个三角形组成:1个;
总共:14+8+8+4+1=35个.
故共有35个三角形.
故答案为:35.
50.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,
最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,
所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;
倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,
所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,
同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;
再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;
而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;
答:开始时装有小球最多的是A箱,其中装有33小球个;
故答案为:A,33.
展开阅读全文