资源描述
四年级数学奥数竞赛试卷及答案
一、拓展提优试题
1.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是 厘米.
2.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高 分.
3.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有 辆.
4.两数相除,商是12,余数是3,被除数最小是 .
5.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?
6.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?
7.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴 号帽子.
8.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生 名.
9.如果,那么= .
10.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距 米.
11.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为 千克.
12.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是 .
13.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生 人.
14.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是 .
【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.
15.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是 .
○●○●●○●●●○●○●●○●●●○●○●●○…
16.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:
(1)水果店原有多少个火龙果?
(2)用完所有的哈密瓜后,还剩多少个猕猴桃?
17.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果 个.
18.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?
19.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是 平方厘米.
20.买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,那么,每斤西红柿的价格是 元 角.
21.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是 元.
22.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是 .
23.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是 cm.
24.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有 杯酒.
25.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出 个正方形.
26.用0、1、2、3、4这五个数字可以组成 个没有重复数字的偶数.
27.空心圆和实心圆排成一行如下图所示:
○●○●●○●●●○●○●●○●●●○●○●●○●●●…
在前200个圆中有 个空心圆.
28.如果a 表示一个三位数,b表示一个两位数,那么,a+b最小是 a+b最大是 ,a﹣b最小是 ,a﹣b最大是 .
29.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长 390 米.
30.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有 个,面积为8S的正方形有 个.
31.三个连续自然数的乘积是120,它们的和是 .
32.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是 米.
33.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要 小时.
34.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是 岁.
35.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相 同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们 所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是 .
36.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁. 年后爸爸、妈妈的年龄和是小翔的6倍.
37.(7分)将偶数按下图进行排列,问:2008排在第 列.
2 4 6 8
16 14 12 10
18 20 22 24
32 30 28 26
…
38.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍, 年后爸爸的年龄是儿子的三倍.
39.定义运算:A△B=2A+B,已知(3△2)△x=20,x= .
40.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是 .
【参考答案】
一、拓展提优试题
1.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.
解:(50+20)×2+(12+4)×2
=70×2+16×2
=140+32
=172(厘米)
答:剩余部分图形的周长是172厘米.
故答案为:172.
【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.
2.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,
所以(x+x﹣4)﹣(y+y﹣5)=17,
整理,可得:2x﹣2y+1=17,
所以2x﹣2y=16,
所以x﹣y=8,
所以乙比丙得分高;
因为x﹣y=8,
所以(x﹣4)﹣(y﹣5)=9,
所以甲比丁得分高,
所以乙得分最高,丁得分最低,
所以四人中最高分比最低分高:
x﹣(y﹣5)
=x﹣y+5
=8+5
=13(分)
答:四人中最高分比最低分高13分.
故答案为:13.
3.解:假设24辆全是4个轮子的汽车,则三轮车有:
(24×4﹣86)÷(4﹣3),
=10÷1,
=10(辆),
答:三轮车有10辆.
故答案为:10.
4.解:除数最小为:3+1=4
12×4+3
=48+3
=51
故答案为:51.
5.解:长方形长比宽多:38﹣31=7(米),
长方形宽:(38﹣7×2)÷3,
=24÷3,
=8(米),
长:8+7=15(米),
(15+8)×2,
=23×2,
=46(米),
答:长方形ABCD的周长46米.
6.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,
所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).
所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,
其中只有495符合要求,954﹣459=495.
答:这个三位数A是495..
7.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;
然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;
接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;
结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;
由于第二位的小孔只看到4,所以小王的帽子编号为4;
由第三位的小田看到1,可知第二位的小孔的帽子编号为1;
因为第四位的小严没看到3,而第五位的小韦看到了3和2,
所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.
故答案是:5.
8.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.
解:(730﹣16)÷17
=714÷17
=42(名);
答:这个班共有学生42名.
故答案为:42.
【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.
9.解:因为,
所以(b+10a)×65=4800+10a+b,
即10a+b=75,
因此b=5,a=7.
即=75.
故答案为:75.
10.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.
解:(50+60)×10÷2
=110×10÷2
=1100÷2
=550(米)
答:甲、乙两地相距550米.
故答案为:550.
【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.
11.解:15+16+18+19+20+31=119(千克),
食堂共买走的总量是:119﹣20=99(千克),
99÷3=33(千克),
第二次买走得重量是:15+18=33(千克),
第一次买走得重量是:16+31+19=66(千克);
答:剩下的一袋重量为20千克.
故答案为:20.
12.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.
解:1024×1=1024
1024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.
32×4=128
答:正方形的周长是128.
【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.
13.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.
解:35﹣(72﹣36﹣19)
=35﹣17
=18(人)
答:四(1)班有女生 18人.
故答案为:18.
【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.
14.解:2×2×5=20
答:正方形ABCD的面积是20.
故答案为:20.
【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.
15.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.
解:2014÷9=223…7,
循环了223次后,还剩7个,里面有4个黑棋子,
223×6+4
=1338+4=1342(个)
答:其中黑棋子的个数是1342个.
故答案为:1342.
【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.
16.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:
剩下的130个对应着箭头部分,然后列式解答;
(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.
解:(1)(130﹣10)÷2
=120÷2
=60(个)
60×6+10
=360+10
=370(个)
答:水果店原有370个火龙果.
(2)370×2=740(个)
740﹣60×10
=740﹣600
=140(个)
答:还剩140个猕猴桃.
【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.
17.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.
解:根据题意可知,
原来甲筐比丙筐少(12+24)=36个苹果,
且原来丙筐是甲筐个数的2倍,
则原来甲筐有:36÷(2﹣1)=36个,
原来丙筐有:36×2=72个,
原来乙筐有:72+(6+12)=90(个)
答:乙筐内原有苹果 90个.
故答案为:90.
【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.
18.【分析】一个质数的2倍一定是偶数,
一个质数的5倍一定是5的倍数,
而36要拆成两个数的和,要么都是偶数,要么都是奇数,
本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,
当是10时,36﹣10=26,26÷2=13
当是20时,4×5=20,4不是质数
当是30时,5×6=30,6不是质数,据此解答.
解:根据分析可得:
符合题意的5的倍数只能是10,20,30
5×2=10,
5×4=20,
5×6=30,
4和6不是质数,
所以只能是2,
36﹣10=26.
答:这两个质数的乘积是26.
【点评】本题考查了质数的定义及其奇数与偶数的性质.
19.解:最大正方形的边长是11厘米,
次大正方形的边长:19﹣11=8(厘米)
最小正方形的边长是:11﹣8=3(厘米)
阴影长方形的长是3厘米,
宽是8﹣3﹣3=2(厘米)
3×2=6(平方厘米)
答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.
故答案为:6.
20.【分析】先根据买5斤黄瓜用了11元8角,比买4斤西红柿少用1元4角,求出西红柿买需要的钱数,再根据单价=总价÷数量即可解答.
解:11元8角=11.8元,1元4角=1.4元
(11.8+1.4)÷4
=13.2÷4
=3.3(元);
3.3元=3元3角;
答:每斤西红柿的价格是3元3角.
故答案为:3,3.
【点评】本题主要考查学生依据单价,数量以及总价之间数量关系解决问题的能力.
21.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.
解:13.5÷(1+),
=13.5÷1.5,
=9(元);
答:一杯饮料的原价是9元;
故答案为:9.
【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.
22.【分析】本题主要考察等差数列.
解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,
由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,
化简后是8x+27=6x+39
∴x=6,
【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.
23.【分析】本题考察图形边长的平移.
解:画出移动后的图,
所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.
【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.
24.解:设李白壶中原有x杯酒,由题意得:
{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,
{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,
{[4x﹣6]×2﹣2}×2﹣2=2,
{8x﹣14}×2﹣2=2,
16x﹣30=2,
16x=32,
x=2;
答:壶中原有2杯酒.
故答案为:2.
25.解:根据题干分析可得:
答:一共可以剪出6个正方形.
故答案为:6.
26.解:一位偶数有:0,2和4,3个;
两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;
三位偶数:
位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,
当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,
根据分类计数原理知共有12+18=30种结果;
四位偶数:
当个位数字为0时,这样的四位数共有:=24个,
当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,
一共是24+36=60(个)
五位偶数:
当个位数字为0时,这样的五位数共有:A44=24个,
当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,
所以组成没有重复数字的五位偶数共有24+36=60个.
一共是:3+10+30+60+60=163(个);
答:可以组成 163个没有重复数字的偶数.
故答案为:163.
27.解:200÷9=22…2,
所以22×3+1=67(个),
答:前200个圆中有67个空心圆.
故答案为:67.
28.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.
解:a+b最小是10+100=110,
a+b最大是99+999=1098,
a﹣b最小是100﹣99=1,
a﹣b最大是999﹣10=989.
故答案为:110,1098,1,989.
【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.
29.解:160×3﹣90,
=480﹣90,
=390(米),
答:山洞长390米.
故答案为:390.
30.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;
(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,
解:(1)观察图形可知,面积为2S的独三角形有4个;
由两个面积为S的三角形组成的三角形有4×4=16(个),
所以一共有4+16=20(个);
(2)面积为8S的正方形只有1个.
故答案为:20;1.
【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.
31.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.
解:120=2×2×2×3×5=(2×2)×(2×3)×5,
2×2=4,2×3=6,5,
即,三个连续自然数的乘积是120,这三个数是4、5、6,
所以,和是:4+5+6=15.
故答案为:15.
【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.
32.解:根据分析可得,
660÷(40﹣10),
=660÷30,
=22(米);
22×10=220(米);
答:火车的车身长是 220米.
故答案为:220.
33.解:船的静水速度为:
360÷10﹣10,
=36﹣10,
=26(千米/时);
返回原地需要:
360÷(26﹣8),
=360÷18,
=20(小时);
答:这条船沿岸边返回原地需要20小时.
故答案为:20.
34.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√
第一句
第二句
第三句
A说
我10岁×
比B小2岁√
比C大1岁√
B说
我不是最小的
C和我差3岁
C是13岁
C说
我比A年龄小×
A是11岁√
B比A大3岁√
由上述推理可以得出:A是11岁,则根据A说“比B小2岁,比C大1岁”可以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;
将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;
答:由上述推理可以得出A是11岁.
故答案为:11.
35.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.
解:西巴巴数字8表示阿拉伯数字9﹣8=1,
西巴巴数字3表示阿拉伯数字9﹣3=6,
西巴巴数字7表示阿拉伯数字9﹣7=2,
西巴巴数字4表示阿拉伯数字9﹣4=5,
西巴巴数字2表示阿拉伯数字9﹣2=7,
所以837+742表示的正常算式为:162+257=419.
故答案为:419.
36.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.
解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,
(5+x)×6=48+42+2x
30+6x=90+2x
4x=60
x=15
答:15年后,爸爸、妈妈的年龄和是小翔的6倍.
故答案为:15.
37.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.
解:2008是第2008÷2=1004个数,
1004÷8=125…4,
说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.
故答案为:4.
38.解:根据题意,由差倍公式可得:
今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);
爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);
12﹣6=6(年).
答:6年后爸爸的年龄是儿子的三倍.
故答案为:6.
39.解:(3△2)△x=20,
(2×3+2)△x=20,
8△x=20,
2×8+x=20,
16+x=20,
x=20﹣16,
x=4;
故答案为:4.
40.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.
解:8÷2=4(人),
因为女生比男生多,所以男生的人数一定小于4人,
所以男生可能是1人,2人或3人;
故答案为:1人,2人或3人.
【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.
展开阅读全文