资源描述
西安高新一中初中校区八年级上册期末数学试卷含答案
一、选择题
1、利用“分形”与“迭代”可以制作出很多精美的图形,以下图形中不是轴对称但是中心对称的图形是( )
A. B. C. D.
2、人类第一次探测到了引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差,三百五十万分之一约为0.0000002856、将0.0000002857用科学记数法表示应为( )
A. B. C. D.
3、下列计算正确的是( )
A. B.
C. D.
4、若代数式在实数范围内有意义,则x的取值范围是( )
A. B. C. D.且
5、下列各式由左边到右边的变形,是因式分解的是( )
A. B.
C. D.
6、下列计算中,一定正确的是( )
A. B. C. D.
7、如图,已知∠ABD=∠BAC,添加下列条件还不能判定△ABC≌△BAD的依据是( )
A.AC=BD B.∠DAB=∠CBA C.∠C=∠D D.BC=AD
8、已知关于x的分式方程的解为正数,则m的取值范围是( )
A. B.且
C. D.且
9、如图,在中,,在延长线上取一点,在延长线上取一点,使,延长交于,若,则的度数为( )
A. B. C. D.
二、填空题
10、如图, 为线段上一动点(不与点、重合),在同侧分别作正三角形和正三角形,与交于点,与交于点,与交于点,连接,以下五个结论:①,②,③,④,⑤,一定成立的是( )
A.①②③④
B.①②④⑤
C.①②③⑤
D.①③④⑤
11、若分式值为,则的值为______.
12、在平面直角坐标系中,点关于直线对称的点的坐标为_____.
13、若,则_______.
14、已知,,则______.
15、如图,A、B两点在直线l的同侧,在l上求作一点M,使AM+BM最小.小明的做法是:做点A关于直线l的对称点,连接,交直线l于点M,点M即为所求.
请你写出小明这样作图的依据:___________.
16、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _____.
17、若,,则的值为___________.
18、如图,在四边形ABCD中,∠DAB=∠ABC,AB=5cm,AD=BC=3cm,点E在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 ___cm/s.
三、解答题
19、(1)分解因式:﹣3x2+6xy﹣3y2;
(2)计算:(x+2)2﹣(x+1)(x﹣1).
20、化简:.
21、已知:如图,∠1=∠2,∠B=∠AED,BC=ED.
求证:AB=AE.
22、,点,分别在射线、上运动(不与点重合).
(1)如图①,、分别是和的平分线,随着点、点的运动, ;
(2)如图②,若是的平分线,的反向延长线与的平分线交于点.
①若,则 ;
②随着点,的运动,的大小是否会变化?如果不变,求的度数;如果变化,请说明理由.
23、国泰公司和振华公司的全体员工踊跃参与“携手防疫,共渡难关”捐款活动,国泰公司共捐款100000元,振华公司共捐款140000元.下面是国泰、振华两公司员工的一段对话:
(1)国泰、振华两公司各有多少人?
(2)现国泰、振华两公司共同使用这笔捐款购买A,B两种防疫物资,A种防疫物资每箱12000元,B种防疫物资每箱10000元.若购买B种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来.(注:A,B两种防疫物资均需购买,并按整箱配送)
24、如图①是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!
如图②是(a+b)n的三个展开式.结合上述两图之间的规律解题:
(1)请直接写出(a+b)4的展开式:(a+b)4= .
(2)请结合图②中的展开式计算下面的式:(x+2)3= .
25、在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)
(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;
(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.
一、选择题
1、C
【解析】C
【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.
【详解】解:A、图形不是中心对称轴图形,是轴对称图形,此选项不合题意;
B、图形是中心对称轴图形,也是轴对称图形,此选项不合题意;
C、图形是中心对称轴图形,不是轴对称图形,此选项符合题意;
D、图形是中心对称轴图形,也是轴对称图形,此选项不合题意;
故选:C.
【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【解析】C
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:0.0000002857=2.857×10-6、
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3、C
【解析】C
【分析】根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.
【详解】解:A、和不是同类项,不能合并,故本选项错误,不符合题意;
B、,故本选项错误,不符合题意;
C、,故本选项正确,符合题意;
D、,故本选项错误,不符合题意;
故选:C
【点睛】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,熟练掌握相关运算法则是解题的关键.
4、C
【解析】C
【分析】根据二次根式的被开方数是非负数,分式的分母不为0解答即可.
【详解】解:∵代数式在实数范围内有意义,
∴x-1≥0,且x≠0
解得:x≥1.
故选:C.
【点睛】本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.
5、B
【解析】B
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.
【详解】解:等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于因式分解,故本选项符合题意;
C.是整式乘法,不属于因式分解,故本选项不符合题意;
D.等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:.
【点睛】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.
6、B
【解析】B
【分析】利用分式的性质、乘法法则逐项判断即可得.
【详解】解:A、与不能约分,所以,则此项错误,不符题意;
B、,则此项正确,符合题意;
C、,则此项错误,不符题意;
D、,则此项错误,不符题意;
故选:B.
【点睛】本题考查了分式的运算,熟练掌握分式的性质是解题关键.
7、D
【解析】D
【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.
【详解】解:由题意得,∠ABD=∠BAC,
A.在△ABC与△BAD中,
,
∴△ABC≌△BAD(SAS);
故选项正确;
B.在△ABC与△BAD中,
,
△ABC≌△BAD(ASA),
故选项正确;
C.在△ABC与△BAD中,
,
△ABC≌△BAD(AAS),
故选项正确;
D.在△ABC与△BAD中,
BC=AD,AB=BA,∠BAC=∠ABD(SSA),△ABC与△BAD不全等,故错误;
故选:D.
【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
8、D
【解析】D
【分析】解分式方程用m表示x,由关于x的分式方程的解是正数及分式方程的增根可求解m的取值范围.
【详解】解:方程两边同乘以x-1得
m+3=x-1,
解得x=m+4,
∵x的分式方程的解是正数,
∴m+4>0,
解得m>-4,
∵x-1≠0,即m+4-1≠0
解得x≠-3,
∴m的取值范围为m>-4且m≠-2、
故选:D.
【点睛】本题考查的是解一元一次不等式,分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键.
9、C
【解析】C
【分析】根据等腰三角形两个底角相等,可得:,,根据传递性,可得:,再根据三角形外角等于其不相邻的两个内角的和,可得:,再根据,得到:,最后根据三角形内角和为,可得:,解出即可得到的大小.
【详解】解:∵
∴
∵
∴
∴
∵是的外角
∴
∵
∴
∴(三角形内角和为)
∴
故选:C
【点睛】本题考查了等腰三角形的性质,三角形的外角性质,三角形的内角和定理,解本题的关键在熟练掌握相关的性质与定理.
二、填空题
10、B
【解析】B
【分析】根据等边三角形的性质可以得出E△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°,就可以得出GH//AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,根据∠AFD=∠EAB+∠CBD=∠CDB+∠CBD=∠ACD=60°,进而得出结论.
【详解】解:∵△ACD和△BCE是等边三角形,
∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.
∵∠ACB=180°,
∴∠DCE=60°.
∴∠DCE=∠BCE.
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB.
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC.
在△CEG和△CBH中,
,
∴△CEG≌△CBH(ASA),
∴CG=CH,GE=HB,
∴△CGH为等边三角形,
∴∠GHC=60°,
∴∠GHC=∠BCH,
∴GH//AB.
∵∠AFD=∠EAB+∠CBD,
∴∠AFD=∠CDB+∠CBD=∠ACD=60°.
∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60°
∴∠DCH≠∠DHC,
∴CD≠DH,
∴AD≠DH.
综上所述,正确的有:①②④⑤.
故选B.
【点睛】本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.
11、2
【分析】根据分式值为零及分式有意义的条件列方程及不等式求解.
【详解】解:由题意可得,
解得:,
故答案为:.
【点睛】本题考查分式值为零的条件,理解当分子为零且分母不等于零时分式的值为零是解题关键.
12、
【分析】首先根据题意可知直线垂直于直线,可设直线的解析式为,再把点代入,即可求得解析式,据此即可求得两直线的交点坐标,最后根据中位坐标即可求得.
【详解】解:点与点关于直线对称
直线垂直于直线
可设直线的解析式为
把点代入解析式,得
解得
故直线的解析式为
解得
故直线与直线的交点坐标为,即线段中点的坐标为
设点的坐标为
则,
解得,
点关于直线对称的点的坐标为
故答案为:.
【点睛】本题考查了坐标与图形,即轴对称图形的特点,熟练掌握和运用轴对称图形的特点是解决本题的关键.
13、
【分析】根据题利用异分母的分式减法运算法则可得,进而代入条件计算即可.
【详解】解:.
故答案为:.
【点睛】本题考查代数式求值,熟练掌握异分母的分式减法运算法则以及利用整体代入法进行计算是解题的关键.
14、2
【分析】根据同底数幂除法的逆运算求解即可.
【详解】解:∵,,
∴,
故答案为:1、
【点睛】本题主要考查了同底数幂除法的逆运算,熟知相关计算法则是解题的关键.
15、两点之间线段最短.
【分析】根据轴对称变换点A关于直线l的对称点,连接,交直线l于点M,根据对称性质得出AM=A′M,进而得出AM+BM=A′M+BM=A′B,在直线l的取M′,连接A′M′,BM′
【解析】两点之间线段最短.
【分析】根据轴对称变换点A关于直线l的对称点,连接,交直线l于点M,根据对称性质得出AM=A′M,进而得出AM+BM=A′M+BM=A′B,在直线l的取M′,连接A′M′,BM′,利用两点之间线段最短得出A′M′+ BM′≥A′B即可.
【详解】解:作点A关于直线l的对称点,连接,交直线l于点M,
∴AM=A′M,
∴AM+BM=A′M+BM=A′B,
在直线l的取M′,连接A′M′,BM′,
则AM′=A′M′,
∴A′M′+ BM′≥A′B,
小明这样作图的依据:两点之间线段最短.
故答案为:两点之间线段最短.
【点睛】本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决.本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.
16、720°##720度
【分析】根据多边形内角和可直接进行求解.
【详解】解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关
【解析】720°##720度
【分析】根据多边形内角和可直接进行求解.
【详解】解:由题意得:该正六边形的内角和为;
故答案为720°.
【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.
17、【分析】根据完全平方公式的变形,代入计算即可.
【详解】解:将a+b=2两边平方得:
,
把ab=-1代入得:,
则原式 ,
故答案为:.
【点睛】此题主要考查了代数式求值,正确应用完全平方公式是
【解析】
【分析】根据完全平方公式的变形,代入计算即可.
【详解】解:将a+b=2两边平方得:
,
把ab=-1代入得:,
则原式 ,
故答案为:.
【点睛】此题主要考查了代数式求值,正确应用完全平方公式是解题关键.
18、或
【分析】根据题意可得当和时两种情况讨论,然后根据全等三角形对应边相等分别列出方程求解即可.
【详解】解:设点F的运动速度为x m/s,
由题意可得,,,,
当时,
∴,
∴,
解得:,
∴此时点
【解析】或
【分析】根据题意可得当和时两种情况讨论,然后根据全等三角形对应边相等分别列出方程求解即可.
【详解】解:设点F的运动速度为x m/s,
由题意可得,,,,
当时,
∴,
∴,
解得:,
∴此时点F的运动速度为1m/s;
当时,
,,
∴,,
解得:,.
∴此时点F的运动速度为m/s;
故答案为:1 或 .
【点睛】此题考查了三角形全等的判定和性质,几何动点问题,解题的关键是根据题意分情况讨论,分别根据全等三角形的性质列出方程求解.
三、解答题
19、(1)-3(x-y)2
(2)4x+5
【分析】(1)先提公因式-3,再用完全平方公式分解即可;
(2)先用完全平方公式与平方差公式计算,再合并同类项即可.
【详解】解:(1)﹣3x2+6xy﹣3y
【解析】(1)-3(x-y)2
(2)4x+5
【分析】(1)先提公因式-3,再用完全平方公式分解即可;
(2)先用完全平方公式与平方差公式计算,再合并同类项即可.
【详解】解:(1)﹣3x2+6xy﹣3y2
=-3(x2-2xy+y2)
=-3(x-y)2;
(2)(x+2)2﹣(x+1)(x﹣1)
=x2+4x+4-x2+1
=4x+4、
【点睛】本题考查提公因式与公式法综合运用,整式混合运算,熟练掌握用提公因式与公式法分解发因式,完全平方公式、平方差公式是解题的关键.
20、【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案.
【详解】解:原式
;
【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.
【解析】
【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案.
【详解】解:原式
;
【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.
21、见解析
【分析】证明△DAE≌△CAB(AAS),由全等三角形的性质得出AB=AE.
【详解】证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,
∴∠DAE=∠CAB.
在△DAE和△CAB中
【解析】见解析
【分析】证明△DAE≌△CAB(AAS),由全等三角形的性质得出AB=AE.
【详解】证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,
∴∠DAE=∠CAB.
在△DAE和△CAB中,
,
∴△DAE≌△CAB(AAS),
∴AB=AE.
【点睛】本题考查了全等三角形的判定及性质,证明△DAE≌△CAB是解题的关键.
22、(1)135
(2)①45;②不变,45°
【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论;
(2 )①根据三角形的内角和定理和角平分线的定义即可得到结论;
②由①的思路可得结论
【解析】(1)135
(2)①45;②不变,45°
【分析】( 1)根据三角形的内角和定理和角平分线的定义即可得到结论;
(2 )①根据三角形的内角和定理和角平分线的定义即可得到结论;
②由①的思路可得结论.
(1)
解:( 1)直线与直线垂直相交于,
,
,
、分别是和角的平分线,
,,
,
;
故答案为:135;
(2)
①,,
,
,
是的平分线,
,
平分,
,
,
故答案为:45;
②的度数不随、的移动而发生变化,
设,
平分,
,
,
,
平分,
,
,
.
【点睛】本题考查了三角形的内角和定理,角平分线的定义,熟练掌握三角形的内角和定理是解题的关键.
23、(1)国泰公司有200人,振华公司有240人.
(2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资.
【分析】(1)设国泰公司有
【解析】(1)国泰公司有200人,振华公司有240人.
(2)有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资.
【分析】(1)设国泰公司有x人,则振华公司有(x+40)人,根据振华公司的人均捐款数是国泰公司的倍,列出分式方程,解之经检验后即可得出结论;
(2)设购买A种防疫物资m箱,购买B种防疫物资n箱,根据总价=单价×数量,列出二元一次方程组,再结合n≥10且m,n均为正整数,即可得出各购买方案.
(1)
解:设国泰公司有x人,则振华公司有(x+40)人,
依题意,得:,
解得:x=200,
经检验,x=200是原方程的解,且符合题意,
∴x+40=240.
答:国泰公司有200人,振华公司有240人.
(2)
设购买A种防疫物资m箱,购买B种防疫物资n箱,
依题意,得:12000m+10000n=100000+140000,
∴m=20n.
又∵n≥10,且m,n均为正整数,
当n=12时,m=20n=10,
当n=18时,m=20n=5,
当n=24时,m=20n=0,不符合题意,故舍去,
∴或,
∴有2种购买方案,方案1:购10箱A种防疫物资,12箱B种防疫物资;方案2:购买5箱A种防疫物资,18箱B种防疫物资.
【点睛】本题考查了分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程.
24、(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8
【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;
(2)根据得出的系数规律,写出展开式即可.
【详解】解:(
【解析】(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8
【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;
(2)根据得出的系数规律,写出展开式即可.
【详解】解:(1)a4+4a3b+6a2b2+4ab3+b4,
故答案为:a4+4a3b+6a2b2+4ab3+b4;
(2)(x+2)3=x3+6x2+12x+8,
故答案为:x3+6x2+12x+7、
【点睛】本题考查了对完全平方公式的应用,杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.
25、(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,
【解析】(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;
(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;
(3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值.
(1)
证明:∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵点B与点D关于直线l对称,
∴BD⊥直线l,BC=CD,
∵直线l∥AB,
∴BD⊥AB,
∴∠ABD=90°,
∴∠CBD=∠CDB=45°,
∴∠BCD=90°,
∴∠ACB+∠BCD=180°,
∴A、C、D三点共线;
(2)
解:∵AC=10cm,BC=7cm,
∴当点F沿D→C方向时,0≤t≤3.5,
∴CE=10-t,CF=7-2t,
∵CE=2CF,
∴10-t=2(7-2t),
解得:t=.
(3)
解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°,
∴∠MEC=∠FCN,
∵△CEM≌△CFN,
当CE=CF时,△CEM≌△CFN,
当点F沿D→C路径运动时,
10-t=7-2t,
解得,t=-3,不合题意,
当点F沿C→B路径运动时,
10-t=2t-7,
解得,t=,
当点F沿B→C路径运动时,
10-t=7-(2t-7×2),
解得,t=11,
∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10,
∴0≤t≤10,
∴t=11时,已停止运动.
综上所述,当t=秒时,△CEM≌△CFN.
【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键.
展开阅读全文