1、成都七中嘉祥外国语学校八年级上册压轴题数学模拟试卷含详细答案一、压轴题1请按照研究问题的步骤依次完成任务(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明A+B=C+D (简单应用)(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) (问题探究)(3)如图3,直线AP平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;(拓展延伸)(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图
2、5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 2如图,在平面直角坐标系中,点、在轴上且关于轴对称 (1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长3某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,在ABC中,ABC与ACB的平分线交于点P,A64,则BPC ;(2)如图2,ABC的内角ACB的平分线与ABC的外角ABD的平分线交于点E其中
3、A,求BEC(用表示BEC);(3)如图3,CBM、BCN为ABC的外角,CBM、BCN的平分线交于点Q,请你写出BQC与A的数量关系,并证明4如图1,在等边ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F(1)求AFE的度数;(2)过点A作AHCE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,BPC=30,且CF=CP,求的值(提示:可以过点A作KAF=60,AK交PC于点K,连接KB)5阅读下面材料,完成(1)-(3)题数学课上,老师出示了这样一道题:如图1,已知等腰ABC中,ABAC,AD为BC边上的中线,以AB为边向AB左侧作等边AB
4、E,直线CE与直线AD交于点F请探究线段EF、AF、DF之间的数量关系,并证明同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现DFC的度数可以求出来”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系”小伟:“通过做辅助线构造全等三角形,就可以将问题解决”.老师:“若以AB为边向AB右侧作等边ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论” (1)求DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明6已知和都是等腰三角
5、形,(初步感知)(1)特殊情形:如图,若点,分别在边,上,则_(填、或=)(2)发现证明:如图,将图中的绕点旋转,当点在外部,点在内部时,求证:(深入研究)(3)如图,和都是等边三角形,点,在同一条直线上,则的度数为_;线段,之间的数量关系为_(4)如图,和都是等腰直角三角形,点、在同一直线上,为中边上的高,则的度数为_;线段,之间的数量关系为_(拓展提升)(5)如图,和都是等腰直角三角形,将绕点逆时针旋转,连结、当,时,在旋转过程中,与的面积和的最大值为_7如图所示,在平面直角坐标系中,已知点的坐标,过点作轴,垂足为点,过点作直线轴,点从点出发在轴上沿着轴的正方向运动(1)当点运动到点处,过
6、点作的垂线交直线于点,证明,并求此时点的坐标;(2)点是直线上的动点,问是否存在点,使得以为顶点的三角形和全等,若存在求点的坐标以及此时对应的点的坐标,若不存在,请说明理由8阅读并填空:如图,是等腰三角形,是边延长线上的一点,在边上且联接交于,如果,那么,为什么?解:过点作交于所以(两直线平行,同位角相等)(_)在与中所以,(_)所以(_)因为(已知)所以(_)所以(等量代换)所以(_)所以9在ABC中,BAC=45,CDAB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且NCM=135,CN=CM,如图(1)求证:ACN=AMC;(2)记ANC得面积为5,记ABC得面
7、积为5求证:;(3)延长线段AB到点P,使BP=BM,如图探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)10(1)问题发现如图1,和均为等边三角形,点、均在同一直线上,连接求证:求的度数线段、之间的数量关系为_(2)拓展探究如图2,和均为等腰直角三角形,点、在同一直线上,为中边上的高,连接请判断的度数为_线段、之间的数量关系为_(直接写出结论,不需证明)11(1)探索发现:如图1,已知RtABC中,ACB90,ACBC,直线l过点C,过点A作ADl,过点B作BEl,垂足分别为D、E求证:ADCE,CDBE(2)迁移应用:如图2,将一块等腰直
8、角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标(3)拓展应用:如图3,在平面直角坐标系内,已知直线y3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45后,所得的直线交x轴于点R求点R的坐标12如图,已知ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm(2)若点Q的运动速度与点P的运动
9、速度相等,经过1s后,BPD与CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次相遇?13如图1在ABC中,ACB=90,AC=BC=10,直线DE经过点C,过点A,B分别作ADDE,BEDE,垂足分别为点D和E,AD=8,BE=6(1)求证:ADCCEB;求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿
10、着线BCCA运动,到终点AM,N两点同时出发,运动时间为t秒(t0),当点N到达终点时,两点同时停止运动,过点M作PMDE于点P,过点N作QNDE于点Q;当点N在线段CA上时,用含有t的代数式表示线段CN的长度;当t为何值时,点M与点N重合;当PCM与QCN全等时,则t=14探索发现:根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:(3)利用规律解方程:15如图,在中,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E(1)当时, , (2)当DC等于多少时,请说明理由;(3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不
11、可以,请说明理由16小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_(填“”,“”或“”),并说明理由(2)特例启发,解答题目:解:题目中,与的大小关系是:_(填“”,“”或“”)理由如下:如图(3),过点作EFBC,交于点(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若的边长为,求的长(请你画出图形,并直接写出结果)17在A
12、BC中,已知A(1)如图1,ABC、ACB的平分线相交于点D求BDC的大小(用含的代数式表示);(2)如图2,若ABC的平分线与ACE的平分线交于点F,求BFC的大小(用含的代数式表示);(3)在(2)的条件下,将FBC以直线BC为对称轴翻折得到GBC,GBC的平分线与GCB的平分线交于点M(如图3),求BMC的度数(用含的代数式表示)18(1)如图1,和都是等边三角形,且,三点在一条直线上,连接,相交于点,求证:(2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、恰交于点求证:; 如图2,在(2)的条件下,试猜想,与存在怎样的数量关系,并说明理由19如图1,直角三角形DEF
13、与直角三角形ABC的斜边在同一直线上,EDF30,ABC40,CD平分ACB,将DEF绕点D按逆时针方向旋转,记ADF为(0180),在旋转过程中;(1)如图2,当 时,当 时,DEBC;(2)如图3,当顶点C在DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N,此时的度数范围是 ;1与2度数的和是否变化?若不变求出1与2度数和;若变化,请说明理由;若使得221,求的度数范围20如图,在等边中,线段为边上的中线动点在直线上时,以为一边在的下方作等边,连结(1)求的度数;(2)若点在线段上时,求证:;(3)当动点在直线上时,设直线与直线的交点为,试判断是否为定值?并说明理由【参考答案】
14、*试卷处理标记,请不要删除一、压轴题1(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【解析】【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,由P+(180-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+C
15、AB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D;(2)解:如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,P
16、AD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平
17、分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型2(1)C(4,0);(2);(3)【解析】【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,
18、利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案【详解】(1)点、关于轴对称,为等边三角形,点C的坐标为:;(2)连接,即:;(3)点到的距离为,延长交于点,过点作轴于点,连接、,为的角平分线,为等边三角形,设,在中,在中,【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键3(1)BPC122;(2)BEC;(3)BQC90A,证明见解析【解析】【分析】(1)根据三角形的内角和化为角平分线
19、的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A与1表示出2,再利用E与1表示出2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC与ECB,然后再根据三角形的内角和定理列式整理即可得解【详解】解:(1)、分别平分和,故答案为:;(2)和分别是和的角平分线,又是的一外角,是的一外角,;(3),结论:【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键4(1)AFE=60;(2)见解析;(3)【解析】【分析】(1)通过证明 得到对应角相等,等量代换推导出;(2)由(1)得
20、到, 则在 中利用30所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明和全等,利用对应边相等,等量代换得到比值.(通过将顺时针旋转60也是一种思路.)【详解】(1)解:如图1中为等边三角形,AC=BC,BAC=ABC=ACB=60,在和中, ,(SAS),BCE=DAC,BCE+ACE=60,DAC+ACE=60,AFE=60(2)证明:如图1中,AHEC,AHF=90,在RtAFH中,AFH=60,FAH=30,AF=2FH,EC=AD,AD=AF+DF=2FH+DF,2FH+DF=EC(3)解:在PF上取一点K使得KF=AF,连接AK、BK,
21、AFK=60,AF=KF,AFK为等边三角形,KAF=60,KAB=FAC,在和中, ,(SAS), AKB=AFC=120,BKE=12060=60,BPC=30,PBK=30, .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.5(1)60;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析【解析】【分析】(1)可设BADCAD,AECACE,在ACE中,根据三角形内角和可得2602180,从而有60,即可得出DFC的度数;(2)在EC上截取EGCF,连接AG,证明AEGACF,然后再证明AFG为等边三角形,从而可得出EFEG
22、GFAFFC;(3)在AF上截取AGEF,连接BG,BF,证明方法类似(2),先证明ABGEBF,再证明BFG为等边三角形,最后可得出结论【详解】解:(1)AB=AC,AD为BC边上的中线,可设BADCAD,又ABE为等边三角形,AE=AB=AC,EAB=60,可设AECACE,在ACE中,2602180,60,DFC=60;(2)EF=AF+FC,证明如下:AB=AC,AD为BC边上的中线,ADBC,FDC=90,CFD60,则DCF=30,CF2DF,在EC上截取EGCF,连接AG,又AE=AC,AEG=ACF,AEGACF(SAS),EAGCAF,AGAF,又CAF=BAD,EAG=BA
23、D,GAFBAD+BAG=EAG+BAG=60,AFG为等边三角形,EFEGGFAFFC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF证明如下:同(1)可设BADCAD,ACEAEC,CAE1802,BAE2180260,60,AFC=60,又ABE为等边三角形,ABE=AFC=60,由8字图可得:BADBEF,在AF上截取AGEF,连接BG,BF,又AB=BE,ABGEBF(SAS),BGBF,又AF垂直平分BC,BF=CF,BFA=AFC=60,BFG为等边三角形,BG=BF,又BCFG,FG=BF=2DF,AFAGGFBFEF2DFEF【点睛】本题考查了全等三角形
24、的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型6(1)=;(2)证明见解析;(3)60,BD=CE;(4)90,AM+BD=CM;(5)7【解析】【分析】(1)由DEBC,得到,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出DABEAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明DABEAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中ADE的面积始终保持不变,而在旋转的过程中,ADC的AC始终保持不变,即可【详
25、解】初步感知(1)DEBC,AB=AC,DB=EC,故答案为:=,(2)成立理由:由旋转性质可知DAB=EAC,在DAB和EAC中,DABEAC(SAS),DB=CE;深入探究(3)如图,设AB,CD交于O,ABC和ADE都是等边三角形,AD=AE,AB=AC,DAE=BAC=60,DAB=EAC,在DAB和EAC中,DABEAC(SAS),DB=CE,ABD=ACE,BOD=AOC,BDC=BAC=60;(4)DAE是等腰直角三角形,AED=45,AEC=135,在DAB和EAC中,DABEAC(SAS),ADB=AEC=135,BD=CE,ADE=45,BDC=ADB-ADE=90,ADE
26、都是等腰直角三角形,AM为ADE中DE边上的高,AM=EM=MD,AM+BD=CM;故答案为:90,AM+BD=CM;【拓展提升】(5)如图,由旋转可知,在旋转的过程中ADE的面积始终保持不变,ADE与ADC面积的和达到最大,ADC面积最大,在旋转的过程中,AC始终保持不变,要ADC面积最大,点D到AC的距离最大,DAAC,ADE与ADC面积的和达到的最大为2+ACAD=5+2=7,故答案为7【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定7(1)证明见解析;(2)存在,或,或,或,或,或,【解析】【分析】(1)通过全
27、等三角形的判定定理ASA证得ABPPCD,由全等三角形的对应边相等证得APDP,DCPB3,易得点D的坐标;(2)设P(a,0),Q(2,b)需要分类讨论:ABPC,BPCQ;ABCQ,BPPC结合两点间的距离公式列出方程组,通过解方程组求得a、b的值,得解【详解】(1)轴在和中,(2)设,解得或,或,或,或,解得,或,综上:,或,或,或,或,或,【点睛】考查了三角形综合题涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解8见解析【解析】【分析】先根据平行线的性质,得到角的关系,然
28、后证明,写出证明过程和依据即可【详解】解:过点作交于,(两直线平行,同位角相等),(两直线平行,内错角相等),在与中,()(全等三角形对应边相等)(已知)(等边对等角)(等量代换)(等角对等边);【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.9(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析【解析】【分析】(1)由三角形的内角和定理可求ACN=AMC=135-ACM;(2)过点N作NEAC于E,由“AAS”可证NECCDM,可得NE=CD,由三角形面
29、积公式可求解;(3)过点N作NEAC于E,由“SAS”可证NEACDP,可得AN=CP【详解】(1)BAC=45,AMC=18045ACM=135ACMNCM=135,ACN=135ACM,ACN=AMC;(2)过点N作NEAC于E,CEN=CDM=90,ACN=AMC,CM=CN,NECCDM(AAS),NE=CD,CE=DM;S1ACNE,S2ABCD,;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,理由如下:过点N作NEAC于E,由(2)可得NE=CD,CE=DMAC=2BD,BP=BM,CE=DM,ACCE=BD+BDDM,AE=BD+BP=DPNE=CD,NEA
30、=CDP=90,AE=DP,NEACDP(SAS),AN=PC【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键10(1)详见解析;60;(2)90;【解析】【分析】(1)易证ACDBCE,即可求证ACDBCE,根据全等三角形对应边相等可求得ADBE,根据全等三角形对应角相等即可求得AEB的大小;(2)易证ACDBCE,可得ADCBEC,进而可以求得AEB90,即可求得DMMECM,即可解题【详解】解:(1)证明:和均为等边三角形,又,为等边三角形,点、在同一直线上,又,故填:;(2)和均为等腰直角三角形,又
31、,在和中,点、在同一直线上,又,故填:90;【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证ACDBCE是解题的关键11(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出ACB=ADC,再判断出CAD=BCE,进而判断出ACDCBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论
32、.【详解】证明:ACB90,ADlACBADCACEADC+CAD,ACEACB+BCECADBCE,ADCCEB90,ACBCACDCBE,ADCE,CDBE,(2)解:如图2,过点M作MFy轴,垂足为F,过点N作NGMF,交FM的延长线于G,由已知得OMON,且OMN90由(1)得MFNG,OFMG,M(1,3)MF1,OF3MG3,NG1FGMF+MG1+34,OFNG312,点N的坐标为(4,2),(3)如图3,过点Q作QSPQ,交PR于S,过点S作SHx轴于H,对于直线y3x+3,由x0得y3P(0,3),OP3由y0得x1,Q(1,0),OQ1,QPR45PSQ45QPSPQSQ由
33、(1)得SHOQ,QHOPOHOQ+QHOQ+OP3+14,SHOQ1S(4,1),设直线PR为ykx+b,则 ,解得 直线PR为yx+3由y0得,x6R(6,0)【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.12(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的
34、路程多10+10=20cm的长度【详解】解:(1)BP=31=3,CQ=31=3(2)t=1s,点Q的运动速度与点P的运动速度相等BP=CQ=31=3cm, AB=10cm,点D为AB的中点,BD=5cm又PC=BCBP,BC=8cm,PC=83=5cm,PC=BD又AB=AC,B=C,在BPD和CQP中, BPDCQP(SAS)(3)点Q的运动速度与点P的运动速度不相等,BP与CQ不是对应边,即BPCQ若BPDCPQ,且B=C,则BP=PC=4cm,CQ=BD=5cm, 点P,点Q运动的时间t=s, cm/s;(4)设经过x秒后点P与点Q第一次相遇 由题意,得x=3x+210, 解得经过s点
35、P与点Q第一次相遇【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程13(1)证明见解析;DE=14;(2)8t10;t=2;t=【解析】【分析】(1)先证明DACECB,由AAS即可得出ADCCEB;由全等三角形的性质得出ADCE8,CDBE6,即可得出DECDCE14;(2)当点N在线段CA上时,根据CNCNBC即可得出答案;点M与点N重合时,CMCN,即3t8t10,解得t2即可;分两种情况:当点N在线段BC上时,PCMQNC,则CMCN,得3t108t,解得t1011;当点N在线段CA上时,PCMQCN,则3t8t10,解得t2;即可得出
36、答案【详解】(1)证明:ADDE,BEDE,ADCCEB90,ACB90,DACDCADCABCE90,DACECB,在ADC和CEB中,ADCCEB(AAS);由得:ADCCEB,ADCE8,CDBE6,DECDCE6814;(2)解:当点N在线段CA上时,如图3所示:CNCNBC8t10;点M与点N重合时,CMCN,即3t8t10,解得:t2,当t为2秒时,点M与点N重合;分两种情况:当点N在线段BC上时,PCMQNC,CMCN,3t108t,解得:t;当点N在线段CA上时,PCMQCN,点M与N重合,CMCN,则3t8t10,解得:t2;综上所述,当PCM与QCN全等时,则t等于s或2s
37、,故答案为:s或2s【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键14(1);(2);(3)见解析【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1), ;故答案为(2)原式 ;(3)已知等式整理得: 所以,原方程即: ,方程的两边同乘x(x
38、+5),得:x+5x2x1,解得:x3,检验:把x3代入x(x+5)240,原方程的解为:x3【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15(1)30,100;(2),见解析;(3)可以,或【解析】【分析】(1)根据平角的定义,可求出 EDC 的度数,根据三角形内和定理,即可求出 DEC ;(2)当 AB=DC 时,利用 AAS 可证明 ABDDCE ,即可得出 AB=DC=3 ;(3)假设 ADE 是等腰三角形,分为三种情况讨论:当 DA=DE 时,求出 DAE=DEA=70 ,求出 BAC ,根据三角形的内角和定理求出 BAD ,根据三角形的内角和定理求出 BDA 即可;当 AD=AE 时, ADE=AED=40 ,根据 AEDC ,得出此时不符合;当 EA=ED 时,求出 DAC ,求出 BAD ,根据三角形的内角和定理求出 ADB 【详解】(1)在 BAD 中,B=50,BDA=100 ,故答案为,(2)当时,理由如下:,在和中(3)可以,理由如下:,分三种情况讨论:当时,当时,又点D与点B重合,不合题意当时,综上所述,当的度数为或时,是等腰三角形【点睛】本题考查的是等腰三角