资源描述
成都七中嘉祥外国语学校八年级上册压轴题数学模拟试卷含详细答案
一、压轴题
1.请按照研究问题的步骤依次完成任务.
(问题背景)
(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D.
(简单应用)
(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)
(问题探究)
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ;
(拓展延伸)
(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ;
(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 .
2.如图,在平面直角坐标系中,,,,点、在轴上且关于轴对称.
(1)求点的坐标;
(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;
(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长.
3.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.
(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC= ;
(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);
(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.
4.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.
(1)求∠AFE的度数;
(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;
(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=CP,求的值.
(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)
5.阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠DFC的度数可以求出来.”
小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”
小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”
......
老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”
(1)求∠DFC的度数;
(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;
(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.
6.已知和都是等腰三角形,,,.
(初步感知)(1)特殊情形:如图①,若点,分别在边,上,则__________.(填>、<或=)
(2)发现证明:如图②,将图①中的绕点旋转,当点在外部,点在内部时,求证:.
(深入研究)(3)如图③,和都是等边三角形,点,,在同一条直线上,则的度数为__________;线段,之间的数量关系为__________.
(4)如图④,和都是等腰直角三角形,,点、、在同一直线上,为中边上的高,则的度数为__________;线段,,之间的数量关系为__________.
(拓展提升)(5)如图⑤,和都是等腰直角三角形,,将绕点逆时针旋转,连结、.当,时,在旋转过程中,与的面积和的最大值为__________.
7.如图所示,在平面直角坐标系中,已知点的坐标,过点作轴,垂足为点,过点作直线轴,点从点出发在轴上沿着轴的正方向运动.
(1)当点运动到点处,过点作的垂线交直线于点,证明,并求此时点的坐标;
(2)点是直线上的动点,问是否存在点,使得以为顶点的三角形和全等,若存在求点的坐标以及此时对应的点的坐标,若不存在,请说明理由.
8.阅读并填空:
如图,是等腰三角形,,是边延长线上的一点,在边上且联接交于,如果,那么,为什么?
解:过点作交于
所以(两直线平行,同位角相等)
(________)
在与中
所以,(________)
所以(________)
因为(已知)
所以(________)
所以(等量代换)
所以(________)
所以
9.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.
(1)求证:∠ACN=∠AMC;
(2)记△ANC得面积为5,记△ABC得面积为5.求证:;
(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)
10.(1)问题发现.
如图1,和均为等边三角形,点、、均在同一直线上,连接.
①求证:.
②求的度数.
③线段、之间的数量关系为__________.
(2)拓展探究.
如图2,和均为等腰直角三角形,,点、、在同一直线上,为中边上的高,连接.
①请判断的度数为____________.
②线段、、之间的数量关系为________.(直接写出结论,不需证明)
11.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
12.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.
(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?
13.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.
(1)①求证:△ADC≌△CEB;②求DE的长;
(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE于点P,过点N作QN⊥DE于点Q;
①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;
②当t为何值时,点M与点N重合;
③当△PCM与△QCN全等时,则t= .
14.探索发现:
……
根据你发现的规律,回答下列问题:
(1)= ,= ;
(2)利用你发现的规律计算:
(3)利用规律解方程:
15.如图,在中,,,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E.
(1)当时, ,
(2)当DC等于多少时,,请说明理由;
(3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由.
16.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:
(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_____(填“”,“”或“”),并说明理由.
(2)特例启发,解答题目:
解:题目中,与的大小关系是:_____(填“”,“”或“”).理由如下:
如图(3),过点作EF∥BC,交于点.(请你将剩余的解答过程完成)
(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△的边长为,,求的长(请你画出图形,并直接写出结果).
17.在△ABC中,已知∠A=α.
(1)如图1,∠ABC、∠ACB的平分线相交于点D.求∠BDC的大小(用含α的代数式表示);
(2)如图2,若∠ABC的平分线与∠ACE的平分线交于点F,求∠BFC的大小(用含α的代数式表示);
(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的平分线与∠GCB的平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).
18.(1)如图1,和都是等边三角形,且,,三点在一条直线上,连接,相交于点,求证:.
(2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、、恰交于点.
①求证:;
②如图2,在(2)的条件下,试猜想,,与存在怎样的数量关系,并说明理由.
19.如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,∠EDF=30°,∠ABC=40°,CD平分∠ACB,将△DEF绕点D按逆时针方向旋转,记∠ADF为α(0°<α<180°),在旋转过程中;
(1)如图2,当∠α= 时,,当∠α= 时,DE⊥BC;
(2)如图3,当顶点C在△DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N,
①此时∠α的度数范围是 ;
②∠1与∠2度数的和是否变化?若不变求出∠1与∠2度数和;若变化,请说明理由;
③若使得∠2≥2∠1,求∠α的度数范围.
20.如图,在等边中,线段为边上的中线.动点在直线上时,以为一边在的下方作等边,连结.
(1)求的度数;
(2)若点在线段上时,求证:;
(3)当动点在直线上时,设直线与直线的交点为,试判断是否为定值?并说明理由.
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【解析】
【分析】
(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;
(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;
(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=.
【详解】
解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)的结论得:,
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,
∴∠P=(∠B+∠D)=23°;
(3)解:如图3,
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°-∠2,∠PCD=180°-∠3,
∵∠P+(180°-∠1)=∠D+(180°-∠3),
∠P+∠1=∠B+∠4,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°;
故答案为:26°;
(4)由题意可得:∠B+∠CAB=∠C+∠BDC,
即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,
∠B+∠BAP=∠P+∠PDB,
即y+∠BAP=∠P+∠PDB,
即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),
即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),
∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB
= y+(∠CAB-∠CDB)
=y+(x-y)
=
故答案为:∠P=;
(5)由题意可得:∠B+∠BAD=∠D+∠BCD,
∠DAP+∠P=∠PCD+∠D,
∴∠B-∠D=∠BCD-∠BAD,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠BAP=∠DAP,∠PCE=∠PCB,
∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,
∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,
∴∠P=90°+∠BCD-∠BAD +∠D
=90°+(∠BCD-∠BAD)+∠D
=90°+(∠B-∠D)+∠D
=,
故答案为:∠P=.
【点睛】
本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.
2.(1)C(4,0);(2);(3).
【解析】
【分析】
(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;
(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;
(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角形中30度角的性质即可求得答案.
【详解】
(1)∵点、关于轴对称,
∴,
∴,
∵,
∴为等边三角形,
∴,
∴,
∴点C的坐标为:;
(2)连接,
∵,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
即:;
(3)∵点到的距离为,
∴,
∴,
∴,
延长交于点,过点作轴于点,连接、,
∵为的角平分线,为等边三角形,
∴,,
∵,,
∴,
∴,
设,
在中,,
∴,
∵,
∴,
∴,
∴,
∴,
∵,,
∴,
∵,
∴,
在中,,,
∴,
∴,,
∴,
∴.
【点睛】
本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键.
3.(1)∠BPC=122°;(2)∠BEC=;(3)∠BQC=90°﹣∠A,证明见解析
【解析】
【分析】
(1)根据三角形的内角和化为角平分线的定义;
(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠E与∠1表示出∠2,于是得到结论;
(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.
【详解】
解:(1)、分别平分和,
,,
,
,
,
,
,
故答案为:;
(2)和分别是和的角平分线,
,,
又是的一外角,
,
,
是的一外角,
;
(3),,
,
,
,
结论:.
【点睛】
本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
4.(1)∠AFE=60°;(2)见解析;(3)
【解析】
【分析】
(1)通过证明 得到对应角相等,等量代换推导出;
(2)由(1)得到, 则在 中利用30°所对的直角边等于斜边的一半,等量代换可得;
(3)通过在PF上取一点K使得KF=AF,作辅助线证明和全等,利用对应边相等,等量代换得到比值.(通过将顺时针旋转60°也是一种思路.)
【详解】
(1)解:如图1中.
∵为等边三角形,
∴AC=BC,∠BAC=∠ABC=∠ACB=60°,
在和中,
,
∴(SAS),
∴∠BCE=∠DAC,
∵∠BCE+∠ACE=60°,
∴∠DAC+∠ACE=60°,
∴∠AFE=60°.
(2)证明:如图1中,∵AH⊥EC,
∴∠AHF=90°,
在Rt△AFH中,∵∠AFH=60°,
∴∠FAH=30°,
∴AF=2FH,
∵,
∴EC=AD,
∵AD=AF+DF=2FH+DF,
∴2FH+DF=EC.
(3)解:在PF上取一点K使得KF=AF,连接AK、BK,
∵∠AFK=60°,AF=KF,
∴△AFK为等边三角形,
∴∠KAF=60°,
∴∠KAB=∠FAC,
在和中,
,
∴(SAS),
∴∠AKB=∠AFC=120°,
∴∠BKE=120°﹣60°=60°,
∵∠BPC=30°,
∴∠PBK=30°,
∴,
∴,
∵
∴ .
【点睛】
掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.
5.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.
【解析】
【分析】
(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;
(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;
(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.
【详解】
解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,
又△ABE为等边三角形,
∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,
在△ACE中,2α+60°+2β=180°,
∴α+β=60°,
∴∠DFC=α+β=60°;
(2)EF=AF+FC,证明如下:
∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,
∵∠CFD=60°,则∠DCF=30°,
∴CF=2DF,
在EC上截取EG=CF,连接AG,
又AE=AC,
∴∠AEG=∠ACF,
∴△AEG≌△ACF(SAS),
∴∠EAG=∠CAF,AG=AF,
又∠CAF=∠BAD,
∴∠EAG=∠BAD,
∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,
∴△AFG为等边三角形,
∴EF=EG+GF=AF+FC,
即EF=AF+FC;
(3)补全图形如图所示,
结论:AF=EF+2DF.证明如下:
同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,
∴∠CAE=180°-2β,
∴∠BAE=2α+180°-2β=60°,∴β-α=60°,
∴∠AFC=β-α=60°,
又△ABE为等边三角形,∴∠ABE=∠AFC=60°,
∴由8字图可得:∠BAD=∠BEF,
在AF上截取AG=EF,连接BG,BF,
又AB=BE,
∴△ABG≌△EBF(SAS),
∴BG=BF,
又AF垂直平分BC,
∴BF=CF,
∴∠BFA=∠AFC=60°,
∴△BFG为等边三角形,
∴BG=BF,又BC⊥FG,∴FG=BF=2DF,
∴AF=AG+GF=BF+EF=2DF+EF.
【点睛】
本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.
6.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7
【解析】
【分析】
(1)由DE∥BC,得到,结合AB=AC,得到DB=EC;
(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;
(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;
(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;
(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.
【详解】
[初步感知](1)∵DE∥BC,
∴,
∵AB=AC,
∴DB=EC,
故答案为:=,
(2)成立.
理由:由旋转性质可知∠DAB=∠EAC,
在△DAB和△EAC中
,
∴△DAB≌△EAC(SAS),
∴DB=CE;
[深入探究](3)如图③,设AB,CD交于O,
∵△ABC和△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAB=∠EAC,
在△DAB和△EAC中
,
∴△DAB≌△EAC(SAS),
∴DB=CE,∠ABD=∠ACE,
∵∠BOD=∠AOC,
∴∠BDC=∠BAC=60°;
(4)∵△DAE是等腰直角三角形,
∴∠AED=45°,
∴∠AEC=135°,
在△DAB和△EAC中
,
∴△DAB≌△EAC(SAS),
∴∠ADB=∠AEC=135°,BD=CE,
∵∠ADE=45°,
∴∠BDC=∠ADB-∠ADE=90°,
∵△ADE都是等腰直角三角形,AM为△ADE中DE边上的高,
∴AM=EM=MD,
∴AM+BD=CM;
故答案为:90°,AM+BD=CM;
【拓展提升】
(5)如图,
由旋转可知,在旋转的过程中△ADE的面积始终保持不变,
△ADE与△ADC面积的和达到最大,
∴△ADC面积最大,
∵在旋转的过程中,AC始终保持不变,
∴要△ADC面积最大,
∴点D到AC的距离最大,
∴DA⊥AC,
∴△ADE与△ADC面积的和达到的最大为2+×AC×AD=5+2=7,
故答案为7.
【点睛】
此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.
7.(1)证明见解析;;(2)存在,,或,或,或,或,或,.
【解析】
【分析】
(1)通过全等三角形的判定定理ASA证得△ABP≌△PCD,由全等三角形的对应边相等证得AP=DP,DC=PB=3,易得点D的坐标;
(2)设P(a,0),Q(2,b).需要分类讨论:①AB=PC,BP=CQ;②AB=CQ,BP=PC.结合两点间的距离公式列出方程组,通过解方程组求得a、b的值,得解.
【详解】
(1)
轴
在和中
,
(2)设,
①,
,解得或
,或,或,或,
②,,
,解得
,或,
综上:,或,或,或,或,或,
【点睛】
考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.
8.见解析
【解析】
【分析】
先根据平行线的性质,得到角的关系,然后证明,写出证明过程和依据即可.
【详解】
解:过点作交于,
∴(两直线平行,同位角相等),
∴(两直线平行,内错角相等),
在与中
,
∴,()
∴(全等三角形对应边相等)
∵(已知)
∴(等边对等角)
∴(等量代换)
∴(等角对等边)
∴;
【点睛】
本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.
9.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.
【解析】
【分析】
(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;
(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;
(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.
【详解】
(1)∵∠BAC=45°,
∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.
∵∠NCM=135°,
∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;
(2)过点N作NE⊥AC于E,
∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,
∴△NEC≌△CDM(AAS),
∴NE=CD,CE=DM;
∵S1AC•NE,S2AB•CD,
∴;
(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,
理由如下:过点N作NE⊥AC于E,
由(2)可得NE=CD,CE=DM.
∵AC=2BD,BP=BM,CE=DM,
∴AC﹣CE=BD+BD﹣DM,
∴AE=BD+BP=DP.
∵NE=CD,∠NEA=∠CDP=90°,AE=DP,
∴△NEA≌△CDP(SAS),
∴AN=PC.
【点睛】
本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.
10.(1)①详见解析;②60°;③;(2)①90°;②
【解析】
【分析】
(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;
(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.
【详解】
解:(1)①证明:∵和均为等边三角形,
∴,,
又∵,
∴,
∴.
②∵为等边三角形,
∴.
∵点、、在同一直线上,
∴,
又∵,
∴,
∴.
③
,
∴.
故填:;
(2)①∵和均为等腰直角三角形,
∴,,
又∵,
∴,
∴,
在和中,
,
∴,
∴.
∵点、、在同一直线上,
∴,
∴.
②∵,
∴.
∵,,
∴.
又∵,
∴,
∴.
故填:①90°;②.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.
11.(1)见解析(2)(4,2)(3)(6,0)
【解析】
【分析】
(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;
(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;
(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.
【详解】
证明:∵∠ACB=90°,AD⊥l
∴∠ACB=∠ADC
∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE
∴∠CAD=∠BCE,
∵∠ADC=∠CEB=90°,AC=BC
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,
由已知得OM=ON,且∠OMN=90°
∴由(1)得MF=NG,OF=MG,
∵M(1,3)
∴MF=1,OF=3
∴MG=3,NG=1
∴FG=MF+MG=1+3=4,
∴OF﹣NG=3﹣1=2,
∴点N的坐标为(4,2),
(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,
对于直线y=﹣3x+3,由x=0得y=3
∴P(0,3),
∴OP=3
由y=0得x=1,
∴Q(1,0),OQ=1,
∵∠QPR=45°
∴∠PSQ=45°=∠QPS
∴PQ=SQ
∴由(1)得SH=OQ,QH=OP
∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1
∴S(4,1),
设直线PR为y=kx+b,则 ,解得
∴直线PR为y=﹣x+3
由y=0得,x=6
∴R(6,0).
【点睛】
本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.
12.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3);(4)经过s点P与点Q第一次相遇.
【解析】
【分析】
(1)速度和时间相乘可得BP、CQ的长;
(2)利用SAS可证三角形全等;
(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;
(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.
【详解】
解:(1)BP=3×1=3㎝,
CQ=3×1=3㎝
(2)∵t=1s,点Q的运动速度与点P的运动速度相等
∴BP=CQ=3×1=3cm,
∵AB=10cm,点D为AB的中点,
∴BD=5cm.
又∵PC=BC﹣BP,BC=8cm,
∴PC=8﹣3=5cm,
∴PC=BD
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
∴△BPD≌△CQP(SAS)
(3)∵点Q的运动速度与点P的运动速度不相等,
∴BP与CQ不是对应边,
即BP≠CQ
∴若△BPD≌△CPQ,且∠B=∠C,
则BP=PC=4cm,CQ=BD=5cm,
∴点P,点Q运动的时间t=s,
∴cm/s;
(4)设经过x秒后点P与点Q第一次相遇.
由题意,得x=3x+2×10,
解得
∴经过s点P与点Q第一次相遇.
【点睛】
本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.
13.(1)①证明见解析;②DE=14;(2)①8t-10;②t=2;③t=
【解析】
【分析】
(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;
②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;
(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;
②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;
③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.
【详解】
(1)①证明:∵AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∵∠ACB=90°,
∴∠DAC+∠DCA=∠DCA+∠BCE=90°,
∴∠DAC=∠ECB,
在△ADC和△CEB中,
∴△ADC≌△CEB(AAS);
②由①得:△ADC≌△CEB,
∴AD=CE=8,CD=BE=6,
∴DE=CD+CE=6+8=14;
(2)解:①当点N在线段CA上时,如图3所示:
CN=CN−BC=8t−10;
②点M与点N重合时,CM=CN,
即3t=8t−10,
解得:t=2,
∴当t为2秒时,点M与点N重合;
③分两种情况:
当点N在线段BC上时,△PCM≌△QNC,
∴CM=CN,
∴3t=10−8t,
解得:t=;
当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,
则3t=8t−10,
解得:t=2;
综上所述,当△PCM与△QCN全等时,则t等于s或2s,
故答案为:s或2s.
【点睛】
本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.
14.(1);(2);(3)见解析.
【解析】
【分析】
(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和
(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.
(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.
【详解】
解:(1), ;
故答案为
(2)原式= ;
(3)已知等式整理得:
所以,原方程即: ,
方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,
解得:x=3,
检验:把x=3代入x(x+5)=24≠0,
∴原方程的解为:x=3.
【点睛】
本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.
15.(1)30,100;(2),见解析;(3)可以,或
【解析】
【分析】
(1)根据平角的定义,可求出 ∠EDC 的度数,根据三角形内和定理,即可求出 ∠DEC ;
(2)当 AB=DC 时,利用 AAS 可证明 ΔABD≅ΔDCE ,即可得出 AB=DC=3 ;
(3)假设 ΔADE 是等腰三角形,分为三种情况讨论:①当 DA=DE 时,求出 ∠DAE=∠DEA=70° ,求出 ∠BAC ,根据三角形的内角和定理求出 ∠BAD ,根据三角形的内角和定理求出 ∠BDA 即可;②当 AD=AE 时, ∠ADE=∠AED=40° ,根据 ∠AED>∠C ,得出此时不符合;③当 EA=ED 时,求出 ∠DAC ,求出 ∠BAD ,根据三角形的内角和定理求出 ∠ADB .
【详解】
(1)在 △BAD 中,
∵∠B=50°,∠BDA=100° ,
∴,
.
故答案为,.
(2)当时,,理由如下:
∵,
∴
∵,
∴
∵
∴
在和中
∴
(3)可以,理由如下:
∵,
∴
分三种情况讨论:
①当时,
∵,
∴
∴
∵
∴
②当时,
∵
∴
又∵
∴
∴点D与点B重合,不合题意.
③当时,
∴
∵
∴
综上所述,当的度数为或时,是等腰三角形.
【点睛】
本题考查的是等腰三角
展开阅读全文