1、七年级数学下册期中测试卷及答案人教一、选择题1的平方根是()A4BC2D2如图,ABC沿BC所在直线向右平移得到DEF,已知EC2,BF8,则平移的距离为( )A3B4C5D63在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( )A第一象限B第二象限C第三象限D第四象限4下列命题:平面内,垂直于同一条直线的两直线平行;经过直线外一点,有且只有一条直线与这条直线平行;垂线段最短;同旁内角互补其中,正确命题的个数有( )A3个B2个C1个D0个5如图所示,三角板如图放置,其中,若,则的度数是( )ABCD6下列各组数中,互为相反数的是( )A与B与C与D与7如图,平分,则( )A11
2、2B126C136D1468若点在轴上,则点的坐标为( )ABCD二、填空题9的算术平方根是_10已知点的坐标是,且点关于轴对称的点的坐标是,则_11如图,在ABC中,CD是它的角平分线,DEAC于点 E若BC6cm,DE2cm,则BCD的面积为_cm212如图,ab,168,242,则3_13将一张长方形纸条ABCD沿EF折叠后,EC交AD于点G,若FGE62,则GFE的度数是_14定义:对任何有理数,都有,若已知=0,则=_15若点P在轴上,则点P的坐标为_16在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放点从原点出发,以每秒1个单位长度的速度沿着等边三角形的
3、边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是_三、解答题17计算:(1) (2)18求下列各式中的x值:(1)(2)19完成下面的证明如图,已知ADBC,EFBC,12,求证:BAC+AGD180证明:ADBC,EFBC(已知),EFB90,ADB90( ),EFBADB(等量代换),EFAD( ),1BAD( ),又12(已知),2 (等量代换),DGBA(内错角相等,两直线平行),BAC+AGD180( )20将ABO向右平移4个单位,再向下平移1个单位,得到三角形ABO(1)请画出平移后的三角形ABO(2)写出点A、O的坐标21数学张老师在课堂上提出一个问题:“通过探究知道
4、:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值22数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正
5、方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由23如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系24如图1,为直线上一点,过点
6、作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3的速度沿顺时针方向旋转一周(1)几秒后与重合?(2)如图2,经过秒后,求此时的值(3)若三角板在转动的同时,射线也绕点以每秒6的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由【参考答案】一、选择题1D解析:D【分析】先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答【详解】解:,4的平方根是,故选D【点睛】本题考查了平方根,解题的关键是要先算出的值和掌握
7、平方根的定义,并学会区分平方根和算术平方根2A【分析】根据平移的性质证明BECF即可解决问题【详解】解:由平移的性质可知,BCEF,BECF,BF8,EC2,BE+CF826,CFBE3,故选:解析:A【分析】根据平移的性质证明BECF即可解决问题【详解】解:由平移的性质可知,BCEF,BECF,BF8,EC2,BE+CF826,CFBE3,故选:A【点睛】本题考查平移的性质,掌握平移的性质是解题的关键3D【分析】设点 ,分轴和轴,两种情况讨论,即可求解【详解】解:设点 ,若轴,则点P、Q的纵坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ;若轴,则点P、Q的横坐标相等,线段,若点坐标
8、是, , ,解得: 或 , 或 ,点 或或 或 ,点不在第四象限故选:D【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键4A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案【详解】平面内,垂直于同一条直线的两直线平行;故正确,经过直线外一点,有且只有一条直线与这条直线平行,故正确垂线段最短,故正确,两直线平行,同旁内角互补,故错误,正确命题有,共3个,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“
9、如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理5B【分析】作BDl1,根据平行线的性质得1=ABD=40,CBD=2,利用角的和差即可求解【详解】解:作BDl1,如图所示:BDl1,1=40,1=ABD=40,又l1l2,BDl2,CBD=2,又CBA=CBD+ABD=90,CBD=50,2=50故选:B【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线6C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得【详解】A、,则与不是相反数,此项不符题意;B、与不是相反数,此项不符题意;C、,则与互为相反数,此
10、项符合题意;D、,则与不是相反数,此项不符题意;故选:C【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键7D【分析】利用平行线的性质及角平分线的定义求解即可;【详解】解:,平分,,故选:D【点睛】本题考查了平行线的性质,角平分线的定义;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键8C【分析】点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标【详解】解:在轴上 点的坐标为 故选:C【点睛】本题考查平面直角坐标系中,坐标解析:C【分析】点在轴上,则纵坐标为零,列式计算,得到 的值,从而代入横坐标得到点M 的坐标
11、【详解】解:在轴上 点的坐标为 故选:C【点睛】本题考查平面直角坐标系中,坐标轴上点的特征,根据知识点切入解题是关键二、填空题9【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键10-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1解析:-3 1 【
12、分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数116【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又
13、BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键12110【分析】如图,利用平行线的性质,求得4=5=1,计算2+5,再次利用平行线的性质,得到3=2+5【详解】如图,ab,4=1=68,5=4=68解析:110【分析】如图,利用平行线的性质,求得4=5=1,计算2+5,再次利用平行线的性质,得到3=2+5【详解】如图,ab,4=1=68,5=4=68,2=42,5+2=68+42=110,ab,3=2+5,3=110,故答案为:110【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键1359【分析】由长方形的性质及折叠的
14、性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿解析:59【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿EF折叠,1=2,ADBC,FGE+GEC=180,FGE=62,GEC=180-62=118,1=2=GEC=59,ADBC,GFE=2,GFE=59故答案为59【点睛】本题主要考查翻折问题,平行线的性质,求解GEC的度数是解题的关键14【分析】先求出a,b的值,2和-3分别代
15、表新运算中的a、b,把a、b的值代入所给的式子即可求值【详解】解:=0,a=2,b= -3, =4-6+9=7,故答案为:7【点睛】解析:【分析】先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值【详解】解:=0,a=2,b= -3, =4-6+9=7,故答案为:7【点睛】本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果解题的关键是对号入座不要找错对应关系15(4,0)【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】点P(m+3,m-1)在x轴上,m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐解析:(
16、4,0)【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可【详解】点P(m+3,m-1)在x轴上,m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐标为(4,0)故答案为:(4,0)【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键16【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1解析:【分析】通过观察可得,An每6个点的纵坐标规律:,0,0,-,0,点An的横坐标规律:1,2,3,4,5,6,n,点从原点出发,以每秒
17、个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,2,3,点P的纵坐标规律:,0,0,0,0,确定P2021循环余下的点即可【详解】解:图中是边长为1个单位长度的等边三角形, A2(1,0)A4(2,0)A6(3,0)An中每6个点的纵坐标规律:,0,0,0, 点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“”的路线运动,1秒钟走一段,P运动每6秒循环一次点P的纵坐标规律:,0,0,-,0,点P的横坐标规律: ,1,2,3,20213366+5,点P2021的纵坐标为,点P2021的横坐标为,点P2021的坐标,故答
18、案为:【点睛】本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键三、解答题17(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+解析:(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键18(1)x=-15;(2)x=8或x=-4【分析】(1)
19、利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解析:(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值【详解】解:(1),解得:x=-15;(2),解得:x=8或x=-4【点睛】本题考查了立方根和平方根正数的立方根是正数,0的立方根是0,负数的立方根是负数即任意数都有立方根19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等解析:
20、垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定【详解】解:ADBC,EFBC(已知),EFB90,ADB90(垂直的定义),EFBADB(等量代换),EFAD(同位角相等,两直线平行),1BAD(两直线平行,同位角相等),又12(已知),2BAD(等量代换),DGBA(内错角相等,两直线平行),BAC+AGD180(两直线平行,同旁内角互补)故答案为:垂直的
21、定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【点睛】本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键20(1)见解析;(2)A,O【分析】(1)分别作出A,B,O的对应点A,B,O即可(2)根据点的位置写出坐标即可【详解】解:(1)如图,ABO即为所求作(2)A(解析:(1)见解析;(2)A,O【分析】(1)分别作出A,B,O的对应点A,B,O即可(2)根据点的位置写出坐标即可【详解】解:(1)如图,ABO即为所求作(2)A(2,1),O(4,1)【点睛】本题考查作图平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型21(
22、1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(2)12,23的整数部分是1,的整数部分是2的小数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大
23、小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键22(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积【详解】解:(1)设长为3x,宽为2x,则:3x2x=30,x=(负值舍去),3x=,2x=,答:这个
24、长方形纸片的长为,宽为;(2)正确理由如下:根据题意得:,解得:,大正方形的面积为102=100【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键23(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EA
25、DCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键24(1)10秒;(2)20秒;(3)2
26、0秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3t,则AOC=30+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分MOB,由题意列出方程,解方程即可【详解】解:(1)303=10,10秒后ON与OC重合;(2)MNABBOM=M=30,AON+BOM=90,AON=60,t=603=20经
27、过t秒后,MNAB,t=20秒(3)如图3所示:AON+BOM=90,BOC=BOM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,则AOC=30+6t,OC与OM重合,AOC+BOC=180,可得:(30+6t)+(90-3t)=180,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:AON+BOM=90,BOC=COM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,AOC=30+6t,BOM+AON=90,BOC=COM=BOM=(90-3t),由题意得:180-(30+6t)=( 90-3t),解得:t=秒,即经过秒OC平分MOB【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键