资源描述
2023衡水市数学八年级上册期末试卷含答案
一、选择题
1、“垃圾分类,利国利民”,以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )
A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾
2、斑叶兰的种子小得简直像灰尘一样,1亿粒斑叶兰种子才50克重,因种子太小,只有放在显微镜下才能看清它的真面目,它的一粒种子重约0.0000005克,数据0.0000005用科学记数法表示为( )
A. B. C. D.
3、下列运算正确的是( )
A.a2•a3=a6 B.a5÷a3=a2 C.a2+a3=a5 D.(a2)3=a5
4、要使分式有意义,则x的取值范围是( )
A. B. C. D.
5、下列等式从左到右的变形是因式分解的是( )
A. B.
C. D.
6、若,则下列分式化简正确的是( )
A. B. C. D.
7、如图,在和中,,,还需在添加一个条件才能使,则不能添加的条件是( )
A. B. C. D.
8、若关于的方程的解是,则关于的方程的解是( )
A., B.,
C., D.,
9、如图,∠DAC=∠ADC=22.5°,DC∥AB,DE⊥AB于E,若AC=4,则DE的长为( )
A.2 B. C.4 D.
二、填空题
10、小张利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的恒等式为( )
A. B.
C. D.
11、若分式的值为0,则x的值是______.
12、在平面直角坐标系中,作点A(4,-3)关于x轴的对称点,再向右平移2个单位长度得到点,则点的坐标是__________.
13、已知两个非零实数a,b满足,,则代数式的值为______.
14、计算的结果是______.
15、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.
16、如图,在四边形ABCD中,,连接BD,将沿着BD翻折得到,点A的对应点E刚好落在CD上,若,则_____________°.
17、若,则______.
18、如图,△ABC中,AB=AC=10cm,BC=8cm,点E为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为________cm/s时,能够使△BPE与△CQP全等.
三、解答题
19、因式分解:
(1)2x2﹣2
(2)x3﹣4x2y+4xy1、
20、解下列分式方程:
(1)
(2)
21、已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.
22、在四边形ABCD中,∠A=∠C=90°.
(1)求:∠ABC+∠ADC= °;
(2)如图①,若DE平分∠ADC,BF平分∠CBM,写出DE与BF的位置关系.
(3)如图②,若BF,DE分别平分∠ABC,∠ADC的外角,写出BF与DE的位置关系,对(2)和(3)任选一个加以证明.
23、请仿照例子解题:
恒成立,求M、N的值.
解:∵,∴
则,即
故,解得:
请你按照.上面的方法解题:若恒成立,求M、N的值.
24、阅读下列材料:
利用完全平方公式,可以将多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法.
运用多项式的配方法及平方差公式能对一些多项式进行分解因式.
例如:
根据以上材料,解答下列问题:
(1)用多项式的配方法将化成的形式;
(2)利用上面阅读材料的方法,把多项式进行因式分解;
(3)求证:,取任何实数时,多项式的值总为正数.
25、在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称.
(1)如图1,OA=OB,AF平分∠BAC交BC于F,BE⊥AF交AC于E,请直接写出EF与EC的数量关系为 ;
(2)如图2,AF平分∠BAC交BC于F,若AF=2OB,求∠ABC的度数;
(3)如图3,OA=OB,点G在BO的垂直平分线上,作∠GOH=45°交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系.
一、选择题
1、B
【解析】B
【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.
【详解】解:A.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
B.既是中心对称图形,又是轴对称图形,故本选项符合题意;
C.是轴对称图形,不是中心对称图形,故本选项不合题意;
D.不是轴对称图形,也不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】本题考查了中心对称图形和轴对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.正确掌握相关定义是解题关键.
2、D
【解析】D
【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.
【详解】解:0.0000005=.
故选:D
【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键.
3、B
【解析】B
【分析】根据同底数幂相乘,同底数相除,合并同类项,幂的乘方,逐项判断即可求解.
【详解】解:A、a2•a3=a5,故本选项错误,不符合题意;
B、a5÷a3=a2,故本选项正确,符合题意;
C、a2和a3不是同类项,无法合并,故本选项错误,不符合题意;
D、(a2)3=a6,故本选项错误,不符合题意;
故选:B
【点睛】本题主要考查了同底数幂相乘,同底数幂相除,合并同类项,幂的乘方,熟练掌握相关运算法则是解题的关键.
4、D
【解析】D
【分析】根据分式在意义的条件:分母不为零,则可求得x的取值范围.
【详解】解:由题意得:,则得,
故选:D.
【点睛】本题考查了使分式有意义的条件,解题的关键是掌握对于分式,一定要注意分母不为零这个条件.
5、D
【解析】D
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义进行判断即可.
【详解】解:A. ,属于整式乘法,故本选项不符合题意;
B. ,不属于因数分解,故本选项不符合题意;
C. ,不属于因数分解,故本选项不符合题意;
D.,属于因数分解,故本选项符合题意;
故选:D.
【点睛】本题考查了因式分解的意义,解题的关键是熟记定义,因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.
6、B
【解析】B
【分析】根据分式的基本性质逐个判断即可.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
【详解】A.从等式的左边不能推出等式的右边,故本选项不符合题意;
B.能从等式的左边推出等式的右边,故本选项符合题意;
C.从等式的左边不能推出等式的右边,故本选项不符合题意;
D.从等式的左边不能推出等式的右边,故本选项不符合题意;
故选:B.
【点睛】本题考查了分式的混合运算和分式的基本性质,能熟记分式的基本性质是解此题的关键.
7、D
【解析】D
【分析】根据全等三角形的判定定理依次分析可得答案.
【详解】解:,
,
即,
∵在与中,,,
若,则可依据证明,故A选项不符合题意;
若,则可依据证明,故B选项不符合题意;
若,则可依据证明,故C选项不符合题意;
若,则不能证明,故D选项符合题意.
故选:D.
【点睛】本题主要考查全等三角形的判定定理,熟记全等三角形的判定定理:,,, ,,并熟练应用解决问题是解题的关键.
8、B
【解析】B
【分析】设,则关于y的方程可化为,从而可得,然后解方程,再一步计算解答即可.
【详解】设,则关于y的方程可化为
方程的解是,
,
检验:当时,
是原方程的根,
,
故选:B.
【点睛】本题考查解分式方程、分式方程的解,熟练掌握换元法是解决本题的关键.
9、B
【解析】B
【分析】由平行线的性质可证AC=DC=4,∠DCF=45°,由角平分线的性质可得DE=DF,即可求解.
【详解】解:如图,过点D作DF⊥AC于F,
∵DC∥AB,
∴∠DAE=∠ADC=22.5°,
∴∠ADC=∠DAC=22.5°,
∴AC=DC=4,∠DCF=45°,
∴∠DCF=∠CDF=45°,
∴CF=DF,
∵∠DAC=∠ADC=22.5°,DE⊥AB
∴DE=DF,
∴CDDF=4,
∴DF=2DE,
故选:B.
【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,证明三角形全等是解题的关键.
二、填空题
10、C
【解析】C
【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
∴.
故选:C.
【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
11、2
【分析】根据分式值为零的条件:分子为零,分母不为零即可求解.
【详解】依题意可得x-2=0,x+1≠0
∴x=2
故答案为:1、
【点睛】此题主要考查分式值为零的条件,解题的关键是熟知分式的值为零的条件.
12、A
【解析】
【分析】根据点关于x轴对称的坐标规律“横坐标不变,纵坐标互为相反数”得到,再根据点平移坐标规律“右加左减,上加下减”得到即可.
【详解】解:点A(4,-3)关于x轴的对称点的坐标为(4,3),再将向右平移2个单位长度得到点的坐标为(6,3),
故答案为:(6,3).
【点睛】本题考查坐标与图形变换-轴对称和平移,熟练掌握点关于轴对称和平移的坐标变换规律是解答的关键.
13、2或
【分析】利用,得出,且或,分情况讨论即可求解.
【详解】解:由题意,
①+②得:,
整理得:,
①-②得:,
整理得:,
∴ 或.
当时,,
∴;
当时,,
∴;
综上,代数式的值为2或.
故答案为:2或.
【点睛】本题考查求代数式的值、分式的运算,利用到了平方式差公式及完全平方公式,解题的关键是掌握完全平方公式及其变形、分式的运算法则,注意分类讨论,避免漏解.
14、
【分析】先将(-0.25)2021化成(-0.25)×(-0.25)2020再逆用积的乘方运算法则计算即可.
【详解】解:原式=(-0.25)×(-0.25)2020×42020
=(-0.25)×(-0.25×4)2020
=(-0.25)×12020
=(-0.25)×1
=-0.24、
故答案为:-0.24、
【点睛】本题考查积的乘方运算的应用,逆用积的乘方运算法则是解题的关键.
15、【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC
【解析】
【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.
【详解】以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG= ==2,
∴AF+CF的最小值是1、
【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.
16、100
【分析】由翻折的性质得出∠ADB=∠BDE=40°,∠A=∠BED,AB=BE,证出∠BEC=∠C,则可求出答案.
【详解】∵将△ABD沿着BD翻折得到△EBD,
∴∠ADB=∠BDE=40
【解析】100
【分析】由翻折的性质得出∠ADB=∠BDE=40°,∠A=∠BED,AB=BE,证出∠BEC=∠C,则可求出答案.
【详解】∵将△ABD沿着BD翻折得到△EBD,
∴∠ADB=∠BDE=40°,∠A=∠BED,AB=BE,
∴∠ADE=80°,
∵∠BEC+∠BED=180°,
∴∠A+∠BEC=180°,
∵AB=BC,
∴BC=BE,
∴∠BEC=∠C,
∴∠A+∠C=180°,
又∵∠A+∠C+∠ADC+∠ABC=360°,
∴∠ABC=360°-180°-80°=100°,
故答案为:100.
【点睛】本题考查了翻折的性质,等腰三角形的性质,四边形内角和定理,熟练掌握旋转的性质是解题的关键.
17、【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为.
【详解】解:,
,
,
,
把代入得:原式,
故答案为.
【点睛】.
本题主要考查知识点为:分式的加减,完全平方公
【解析】
【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为.
【详解】解:,
,
,
,
把代入得:原式,
故答案为.
【点睛】.
本题主要考查知识点为:分式的加减,完全平方公式.熟练掌握分式的加减方法和完全平方公式是解决此题的关键.
18、75或3
【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定得出两种情况:①BE=CP,BP=CQ,②BE=CQ,BP=PC,设运动时间为t秒,列出方程,再求出答案即可.
【详解】解:
【解析】75或3
【分析】根据等腰三角形的性质得出∠B=∠C,根据全等三角形的判定得出两种情况:①BE=CP,BP=CQ,②BE=CQ,BP=PC,设运动时间为t秒,列出方程,再求出答案即可.
【详解】解:设运动时间为t秒,
∵AB=10厘米,点E为AB的中点,
∴BE=AB=5(cm),
∵AB=AC,
∴∠B=∠C,
∴要使,△BPE能够与△CQP全等,有两种情况:
①BE=CP,BP=CQ,
8﹣3t=5,
解得:t=1,
∴CQ=BP=3×1=3,
∴点Q的运动速度为3÷1=3(厘米/秒);
②BE=CQ,BP=PC,
∵BC=8厘米,
∴BP=CP=BC=5(厘米),
即3t=4,
解得:t=,
∴CQ=BE=5厘米,
∴点Q的运动速度为5÷=3.75(厘米/秒),
故答案为:3或3.74、
【点睛】本题考查了全等三角形的判定和等腰三角形的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想.
三、解答题
19、(1)2(x+1)(x-1)
(2)x(x-2y)2
【分析】(1)直接提取公因式2,再利用公式法分解因式即可;
(2)直接提取公因式x,再利用公式法分解因式即可.
(1)2x2﹣2=2(x2-1)
【解析】(1)2(x+1)(x-1)
(2)x(x-2y)2
【分析】(1)直接提取公因式2,再利用公式法分解因式即可;
(2)直接提取公因式x,再利用公式法分解因式即可.
(1)2x2﹣2=2(x2-1)=2(x+1)(x-1)
(2)x3﹣4x2y+4xy2=x(x2-4xy+4y2)=x(x-2y)2
【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
20、(1)
(2)
【分析】(1)先去分母化为一元一次方程求解,然后进行检验即可;
(2)先去分母化为一元一次方程求解,然后进行检验即可.
(1)
去分母,得
移项,得
合并同类项,得
系数化为1,得
【解析】(1)
(2)
【分析】(1)先去分母化为一元一次方程求解,然后进行检验即可;
(2)先去分母化为一元一次方程求解,然后进行检验即可.
(1)
去分母,得
移项,得
合并同类项,得
系数化为1,得
检验,当时,≠0
∴原方程的解为
(2)
方程两边同时乘,得
化简得,
解得
检验:当时,≠0,
∴原方程的解为.
【点睛】题目主要考查解分式方程的一般步骤,熟练掌握解分式方程的方法是解题关键.
21、见解析
【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.
【详解】证明:∵点C是AE的中点,
∴AC=CE,
∵AB∥CD,
∴∠A=∠ECD,
在△ABC和△CDE中,,
∴△
【解析】见解析
【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE.
【详解】证明:∵点C是AE的中点,
∴AC=CE,
∵AB∥CD,
∴∠A=∠ECD,
在△ABC和△CDE中,,
∴△ABC≌△CDE(SAS).
【点睛】本题考查了全等三角形的判定,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.
22、(1);(2),理由见解析;(3),理由见解析
【分析】(1)根据四边形内角和等于360°列式计算即可得解;
(2)如图1,延长DE交BF于G,易证∠ADC=∠CBM,可得∠CDE=∠EBF,即可得
【解析】(1);(2),理由见解析;(3),理由见解析
【分析】(1)根据四边形内角和等于360°列式计算即可得解;
(2)如图1,延长DE交BF于G,易证∠ADC=∠CBM,可得∠CDE=∠EBF,即可得∠EGB=∠C=90゜,则可证得DE⊥BF;
(3)如图2,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.
【详解】(1)∵∠A=∠C=90°,
∴∠ABC+∠ADC=360°-90°×2=180°;
(2)DE⊥BF,理由如下:
如图:延长DE交BF于点G
∵∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C=90°
∴∠ABC+∠ADC=180°
∵∠ABC+∠MBC=180°
∴∠ADC=∠MBC
∵DE、BF分别平分∠ADC、∠MBC
∴∠EDC=∠ADC,∠EBG= ∠MBC
∴∠EDC=∠EBG
∵∠EDC+∠DEC+∠C=180°,∠EBG+∠BEG+∠EGB=180°,∠DEC=∠BEG
∴∠EGB=∠C=90°
∴DE⊥BF
(3)DE∥BF,理由如下:
如图:连接BD
∵DE、BF分别平分∠NDC、∠MBC
∴∠EDC= ∠NDC,∠FBC=∠MBC
∵∠ADC+∠NDC=180°,∠ADC=∠MBC
∴∠MBC+∠NDC=180°
∴∠EDC+∠FBC=90°
∵∠C=90°
∴∠CDB+∠CBD=90°
∴∠EDC+∠CDB+∠FBC+∠CBD=180°,即∠EDB+∠FBD=180°
∴DE∥BF.
【点睛】本题考查了三角形内角和定理,平行线的性质以及三角形外角的性质,掌握辅助线的作法是解题的关键.
23、M、N的值分别为,
【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值.
【详解】解:∵,
∴
即
故,
解得
答:M、N
【解析】M、N的值分别为,
【分析】仿照题目当中例题的解法,一步一步的求解,根据等式两边对应项的系数相等列出关于M、N的二元一次方程组,进而求出M、N的值.
【详解】解:∵,
∴
即
故,
解得
答:M、N的值分别为,.
【点睛】此题考查了分式混合运算,解题的关键是读懂例题的解法并熟练运用分式运算法则.
24、(1);(2);(3)见解析
【分析】(1)根据题意,利用配方法进行解答,即可得到答案;
(2)根据题意,根据材料的方法进行解答,即可得到答案;
(3)利用配方法把代数式进行化简,然后由完全平方的非
【解析】(1);(2);(3)见解析
【分析】(1)根据题意,利用配方法进行解答,即可得到答案;
(2)根据题意,根据材料的方法进行解答,即可得到答案;
(3)利用配方法把代数式进行化简,然后由完全平方的非负性,即可得到结论成立.
【详解】解:(1)
=
;
(2)
;
(3)证明:
;
∵,,
∴的值总是正数.
即的值总是正数.
【点睛】此题考查了因式分解的应用,配方法的应用,以及非负数的性质:偶次方,熟练掌握配方法、因式分解的方法是解本题的关键.
25、(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取CF的中
【解析】(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取CF的中点T,连接OT.由OA=OC,BO⊥AC,推出BA=BC,推出∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,利用三角形内角和定理,构建方程求解即可;
(3)结论:OG=GH,OG⊥GH.如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.证明∠GOH′=GOH=45°,推出点H与点H′重合,可得结论.
(1)解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC;
(2)解:如图2中,取CF的中点T,连接OT.∵AO=OC,FT=TC,∴OT∥AF,OT=AF,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=2∠OBC=72°;
(3)解:结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°-n)=90°-n,∠GH′B=(180°-m-n)=90°-m-n,∴∠KH′O=∠GH′O-∠GH′B=90°-n-(90°-m-n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO.
【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题.
展开阅读全文