资源描述
人教版七7年级下册数学期末测试题含解析
一、选择题
1.的平方根是()
A.9 B.9和﹣9 C.3 D.3和﹣3
2.下列现象中,( )是平移
A.“天问”探测器绕火星运动 B.篮球在空中飞行
C.电梯的上下移动 D.将一张纸对折
3.点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列说法中,错误的个数为( ).
①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交.
A.1个 B.2个 C.3个 D.4个
5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( )
A. B. C. D.
6.对于有理数a.b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b.例如:min{1,﹣2}=﹣2,已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( )
A.﹣1 B.1 C.﹣2 D.2
7.已知:如图,AB∥EF,CD⊥EF,∠BAC=30°,则∠ACD=( )
A.100° B.110° C.120° D.130°
8.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是( )
A.(3,44) B.(41,44) C.(44,41) D.(44,3)
九、填空题
9.比较大小,请在横线上填“>”或“<”或“=”________.
十、填空题
10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______
十一、填空题
11.如图,在中,,的角平分线与的外角角平分线交于点E,则__________度.
十二、填空题
12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.
十三、填空题
13.如图,将长方形沿折叠,使点C落在边上的点F处,若,则___º.
十四、填空题
14.用表示一种运算,它的含义是:,如果,那么
__________.
十五、填空题
15.点P(2a,2﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是__.
十六、填空题
16.如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形的顶点坐标分别为,,,则按图中规律,点的坐标为______.
十七、解答题
17.计算:
(1)3-(-5)+(-6)
(2)
十八、解答题
18.求下列各式中的值:
(1);(2);(3).
十九、解答题
19.已知:,,垂足分别为B,D,,
求证:,
请你将证明过程补充完整.
证明:∵,,垂足分别为B,D(已知).
∴(垂直定义).
∴______________∥______________()
∴______________()
又∵(已知)
∴∠2=(),
∴______________∥______________()
∴()
二十、解答题
20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).
(1)在平面直角坐标系中画出△ABC;
(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;
(3)求△A′B′C′的面积.
二十一、解答题
21.例如∵即,∴的整数部分为2,小数部分为,仿照上例回答下列问题;
(1)介于连续的两个整数a和b之间,且a<b,那么a= ,b= ;
(2)x是的小数部分,y是的整数部分,求x= ,y= ;
(3)求的平方根.
二十二、解答题
22.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由.
二十三、解答题
23.已知,AB∥DE,点C在AB上方,连接BC、CD.
(1)如图1,求证:∠BCD+∠CDE=∠ABC;
(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;
(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.
二十四、解答题
24.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)①∠ABN的度数是 ;②∵AM∥BN,∴∠ACB=∠ ;
(2)求∠CBD的度数;
(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;
(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .
二十五、解答题
25.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
【参考答案】
一、选择题
1.D
解析:D
【分析】
先化简,再根据平方根的地红衣求解.
【详解】
解:∵=9,
∴的平方根是,
故选D.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
2.C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不
解析:C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意;
B. 篮球在空中飞行不是平移,故此选项不符合题意;
C. 电梯的上下移动是平移,故此选项符合题意;
D. 将一张纸对折不是平移,故此选项不符合题意
故选:C.
【点睛】
本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.
3.C
【分析】
根据平面直角坐标系象限的符合特点可直接进行排除选项.
【详解】
解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;
故选C.
【点睛】
本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.
4.D
【分析】
根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案.
【详解】
①在同一平面内,两条不相交的直线叫做平行线,故本小题错误,
②过直线外一点有且只有一条直线与已知直线平行,故本小题错误,
③在同一平面内不平行的两条直线一定相交;故本小题错误,
④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误.
综上所述:错误的个数为4个.
故选D.
【点睛】
本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键.
5.D
【分析】
由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.
【详解】
解:由题意得:AG∥BE∥CD,CF∥BD,
∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°
∴∠CFB=∠CDB
∴∠CAG=∠CDB
由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°
∴∠CAG=∠CDB=∠1+∠BAG=2α
∴∠2=180°-2∠BDC=180°-4α
故选D.
【点睛】
本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.
6.A
【分析】
根据a,b的范围即可求出a−b的立方根.
【详解】
解:根据题意得:a≤,b≥,
∵25<30<36,
∴5<<6,
∵a和b为两个连续正整数,
∴a=5,b=6,
∴a﹣b=﹣1,
∴﹣1的立方根是﹣1,
故选:A.
【点睛】
本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.
7.C
【分析】
如图,过点C作,利用平行线的性质得到,,则易求∠ACD的度数.
【详解】
解:过点C作,则,
,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质.该题通过作辅助线,将转化为(+90°)来求.
8.D
【分析】
根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.
【详解】
解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,
解析:D
【分析】
根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.
【详解】
解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,
则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,
此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,
∵2021=452-4=2025-4,
∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,
即(44,3)的位置.
故选:D.
【点睛】
本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.
九、填空题
9.=
【分析】
先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可
【详解】
解:∵,
∴=
故答案为:=
【点睛】
本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌
解析:=
【分析】
先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可
【详解】
解:∵,
∴=
故答案为:=
【点睛】
本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键.
十、填空题
10.a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-
解析:a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),
点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),
则a=3,b=-4.
【点睛】
此题考查关于x轴、y轴对称的点的坐标,难度不大
十一、填空题
11.35
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.
【详解】
解
解析:35
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠EBC表示出∠ECD,再利用∠E与∠EBC表示出∠ECD,然后整理即可得到∠A与∠E的关系,进而可求出∠E.
【详解】
解:∵BE和CE分别是∠ABC和∠ACD的角平分线,
∴∠EBC=∠ABC,∠ECD=∠ACD,
又∵∠ACD是△ABC的一外角,
∴∠ACD=∠A+∠ABC,
∴∠ECD=(∠A+∠ABC)=∠A+∠ECD,
∵∠ECD是△BEC的一外角,
∴∠ECD=∠EBC+∠E,
∴∠E=∠ECD-∠EBC=∠A+∠EBC-∠EBC=∠A=×70°=35°,
故答案为:35.
【点睛】
本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
十二、填空题
12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:
【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.
十三、填空题
13.23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED
解析:23
【分析】
根据∠EFB求出∠BEF,根据翻折的性质,可得到∠DEC=∠DEF,从而求出∠DEC的度数,即可得到∠EDC.
【详解】
解:∵△DFE是由△DCE折叠得到的,
∴∠DEC=∠FED,
又∵∠EFB=44°,∠B=90°,
∴∠BEF=46°,
∴∠DEC=(180°-46°)=67°,
∴∠EDC=90°-∠DEC=23°,
故答案为:23.
【点睛】
本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键.
十四、填空题
14.【分析】
按照新定义的运算法先求出x,然后再进行计算即可.
【详解】
解:由
解得:x=8
故答案为.
【点睛】
本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的
解析:
【分析】
按照新定义的运算法先求出x,然后再进行计算即可.
【详解】
解:由
解得:x=8
故答案为.
【点睛】
本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x的值.
十五、填空题
15.(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a
解析:(-4,8)
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解.
【详解】
解:∵点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,
∴-2a+2-3a=12,
解得a=-2,
∴2a=-4,2-3a=8,
∴点P的坐标为(-4,8).
故答案为:(-4,8).
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
十六、填空题
16.【分析】
根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
【详解】
解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边
解析:
【分析】
根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.
【详解】
解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6
∴A7A9=8,A5A7=6,A3A5=4
∴A3A7= A5A7- A3A5=2
∴A3A7= A7A9- A3A7=6
又∵A3与原点重合
∴A9的坐标为(6,0)
故答案为:(6,0).
【点睛】
本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.
十七、解答题
17.(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
解析:(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
=2
(2)解:(-1)2-
=1-4×
=1-2
=-1
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
十八、解答题
18.(1);(2);(3)
【分析】
直接根据平方根的定义逐个解答即可.
【详解】
解:(1)∵,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴,
∴.
【点睛】
此题主要考查了平方根的定义,熟练掌握平
解析:(1);(2);(3)
【分析】
直接根据平方根的定义逐个解答即可.
【详解】
解:(1)∵,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴,
∴.
【点睛】
此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.
十九、解答题
19.答案见详解.
【分析】
根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.
【详解】
证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己
解析:答案见详解.
【分析】
根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.
【详解】
证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),
∴∠ABC=∠ADE=90°(垂直定义),
∴BC∥DE(同位角相等,两直线平行),
∴∠1=∠EBC(两直线平行,内错角相等),
又∵∠l=∠2 (已知),
∴∠2=∠EBC(等量代换),
∴BE∥GF(同位角相等,两直线平行),
∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).
【点睛】
本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′
解析:(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;
(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.
【详解】
解:(1)如图,△ABC为所作;
(2)如图,△A′B′C′为所作;
(3)△A′B′C′的面积=.
【点睛】
本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(
解析:(1),;(2);(3)
【分析】
(1)根据的范围确定出、的值;
(2)求出,的范围,即可求出、的值,代入求出即可;
(3)将代入中即可求出.
【详解】
解:(1),
,
,,
故答案是:,;
(2),
,,
的小数部分为:,
的整数部分为:3;
故答案是:;
(3),
,
的平方根为:.
【点睛】
本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出.
二十二、解答题
22.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸
解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸片的面积为()2+()2=36(cm2),
所以大正方形的边长为6cm,
设截出的长方形的长为3b cm,宽为2b cm,
则6b2=30,
所以b=(取正值),
所以3b=3=>,
所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.
二十三、解答题
23.(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质
解析:(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;
(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.
【详解】
证明:(1)如图,过点作,
,
,
,
,即,
,
;
(2)如图,过点作,
,
,
,
,即,
,
,
,
,
;
(3)如图,过点作,延长至点,
,
,
,
,
平分,平分,
,
由(2)可知,,
,
又,
.
【点睛】
本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
二十四、解答题
24.(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的
解析:(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的定义可以证明∠CBD=∠ABN,即可求出结果;
(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;
(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.
【详解】
解:(1)①∵AM//BN,∠A=64°,
∴∠ABN=180°﹣∠A=116°,
故答案为:116°;
②∵AM//BN,
∴∠ACB=∠CBN,
故答案为:CBN;
(2)∵AM//BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°﹣64°=116°,
∴∠ABP+∠PBN=116°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=116°,
∴∠CBD=∠CBP+∠DBP=58°;
(3)不变,
∠APB:∠ADB=2:1,
∵AM//BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(4)∵AM//BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,
则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN
∴∠ABC=∠DBN,
由(1)∠ABN=116°,
∴∠CBD=58°,
∴∠ABC+∠DBN=58°,
∴∠ABC=29°,
故答案为:29°.
【点睛】
本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.
二十五、解答题
25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.
【详解】
(1)∵,(三角形内角和180°)
∴,(等式性质)
∵,
∴,
∴.(等量代换)
故答案为:三角形内角和180°;等量代换.
(2)如图,延长交于,
由三角形外角性质可知,
,,
∴.
(3)①如图①所示,连接BC,
,
根据(1)中结论,得,
∴,
∴;
②如图②所示,连接BC,
,
根据(1)中结论,得,
∴,
∵与的角平分线交于点,
∴,,
∴,
∵,,
∴,
∴,
∵,
∴;
③如图③所示,连接BC,
,
根据(1)中结论,得,
∵,,
∴,
∵与的十等分线交于点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
④如图④所示,设与的交点为点,
∵平分,平分,
∴,,
∵,,
∴,
∴,
∴,
即;
⑤∵,的角平分线交于点,
∴,
∴.
【点睛】
本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.
展开阅读全文