资源描述
深圳宏扬学校初中部八年级上册期末数学试卷含答案
一、选择题
1、下列医疗或救援的标识中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰.据测定,杨絮纤维的直径约为,该数用科学记数法表示为( )
A. B. C. D.
3、若,,则( )
A.5 B.6 C.7 D.12
4、使式子有意义的x范围是( )
A. B. C.x≠0 D.
5、下列各式的变形中,属于因式分解的是( )
A. B.
C. D.
6、下列等式成立的是( )
A. B.
C. D.
7、如图,能用ASA来判断△ACD≌△ABE,需要添加的条件是( )
A.∠AEB=∠ADC,AC=AB B.∠AEB=∠ADC,CD=BE
C.AC=AB,AD=AE D.AC=AB,∠C=∠B
8、已知一次函数的图象不经过第四象限,且关于x的分式方程有整数解,则满足条件的所有整数a的和为( )
A.12 B.6 C.4 D.2
9、如图,在中,,,平分,则的度数是( )
A. B. C. D.
二、填空题
10、如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是( )
A.②③④ B.①② C.①④ D.①②③④
11、已知分式,当x=2时,分式的值为0,当x=1时,分式无意义,则m+n=_____.
12、已知点A与点B(-3,4)关于x轴对称,则点A关于y轴对称的点的坐标为___.
13、已知,则的值是__________.
14、若3x-5y-1=0,则________.
15、如图,在锐角中,,,平分,、分别是、上的动点,则的最小值是______.
16、如果x2-mx+4是一个完全平方式,则m的值为________.
17、已知满足,试求的最大值__________.
18、如图,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为设点的运动速度为,若使得与全等,则的值为______.
三、解答题
19、因式分解:
(1);
(2).
20、解分式方程:.
21、如图,点B,E,C,F在一条直线上,∠B=∠DEF,∠ACB=∠F,BE=CF.求证:∠A=∠D.
22、已知:.
(1)如图1,求证:;
(2)如图2,连接,,点P在射线上,,射线交于点M,补全图形后请探究的数量关系,并证明你的结论.
23、某食品工厂生产蛋黄肉粽,由于端午节临近,该食品工厂接收了一个公司的端午福利订单,由一车间完成该订单,共需生产3万个粽子,计划10天完成.
(1)该食品工厂的计划是安排x名工人恰好按时完成,若所有工人生产效率相同,则每名工人每天应生产蛋黄肉粽 个(用含x的式子表示).
(2)该食品工厂一车间安排x名工人按原计划生产3天后,公司提出由于物流需要时间,希望可以提前几天交货,所以食品工厂又从其它车间抽调了6名工人参加该订单的生产(所有工人生产效率相同),结果该车间提前2天完成了该订单.问食品工厂一车间原计划安排了多少名工人生产蛋黄肉粽?
24、阅读理解:
已知a+b=﹣4,ab=3,求+的值.
解:∵a+b=﹣4,
∴=.
即+=15、
∵=3,
∴+=9、
参考上述过程解答:
(1)已知=﹣3,=﹣1、求式子()(+)的值;
(2)若,=﹣12,求式子的值.
25、如图①,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点.
(1)若+b2-10b+25=0,判断△AOB的形状,并说明理由;
(2)如图②,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,MN=7,求BN的长;
(3)如图③,若即点A不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围.
一、选择题
1、C
【解析】C
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
2、D
【解析】D
【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
【详解】解:,
故选:D.
【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.
3、D
【解析】D
【分析】逆用同底数幂的乘法和幂的乘方法则计算即可.
【详解】解:∵,,
∴,
故选:D.
【点睛】本题考查了同底数幂的乘法和幂的乘方的逆用,熟练掌握运算法则是解题的关键.
4、B
【解析】B
【分析】分式有意义的条件是分母不等于零.
【详解】由题意得:,
解得:,
故选:B.
【点睛】本题考查了分式有意义的条件.
5、B
【解析】B
【分析】根据因式分解的定义:把一个多项式化为整式的积的形式,对选项进行判断.
【详解】解:A、从左到右的变形为整式乘法,故不符合题意.
B、左边为多项式,右边为整式的积,故符合题意.
C、左边为多项式,右边为整式的积,但等号不成立,故不符合题意.
D、左边、右边均为多项式,故不符合题意.
故选B.
【点睛】本题考查因式分解的定义,解决本题的关键是充分理解因式分解的定义.
6、B
【解析】B
【分析】根据分式的基本性质以及分式的加法运算法则进行判断即可.
【详解】解:A.,故此选项错误,不符合题意;
B.,故此选项正确,符合题意;
C.,故此选项错误,不符合题意;
D.,故此选项错误,不符合题意;
故选:B.
【点睛】本题考查了分式的基本性质以及分式的加减法,熟练掌握分式的基本性质是解本题的关键.
7、D
【解析】D
【分析】根据全等三角形的判定定理可进行排除选项.
【详解】解:由图形可知:∠A=∠A,则有:
当添加∠AEB=∠ADC,AC=AB,满足“AAS”判定△ACD≌△ABE,故A选项不符合题意;
当添加∠AEB=∠ADC,CD=BE,满足“AAS”判定△ACD≌△ABE,故B选项不符合题意;
当添加AC=AB,AD=AE,满足“SAS”判定△ACD≌△ABE,故C选项不符合题意;
当添加AC=AB,∠C=∠B,满足“ASA”判定△ACD≌△ABE,故D选项符合题意;
故选D.
【点睛】本题主要考查全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键.
8、D
【解析】D
【分析】先根据不经过第四象限,求出a的取值范围,然后求出分式方程的解,根据分式方程的解为整数结合分式有意义的条件求解即可.
【详解】解:∵不经过第四象限,
∴,
解得,
∵
∴,
∴
∴,
∵分式方程有整数解,
∴,,,
又∵分式要有意义,
∴,
∴,
∵,
∴,
∴或或
∴或或或,
∴满足条件的所有整数a的和=1+3+0+(-2)=2,
故选:D.
【点睛】本题主要考查了一次函数图象的性质,解分式方程,分式有意义的条件,解题的关键在于能够熟练掌握相关知识进行求解.
9、A
【解析】A
【分析】根据三角形的内角和定理和三角形的外角的性质即可得到结论.
【详解】解:∵在中,,,
∴
,
∵平分,
∴,
∴.
故选:A.
【点睛】本题考查了三角形外角的性质,三角形的内角和定理,角平分线的定义.熟练掌握三角形的内角和定理是解题的关键.
二、填空题
10、B
【解析】B
【分析】连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得
△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.
【详解】解:如图
连接AP,PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,
AP是∠BAC的平分线,∠1=∠2,
△APR≌△APS.
AS=AR,
又QP/AR,
∠2 = ∠3又∠1 = ∠2,
∠1=∠3,
AQ=PQ,
没有办法证明△PQR≌△CPS,③不成立,
没有办法证明AC-AQ=2SC,④不成立.
所以B选项是正确的.
【点睛】本题主要考查三角形全等及三角形全等的性质.
11、3
【分析】分式分母的值为0时分式没有意义,要使分式的值为0,必须分式分子的值为0并且分母的值不为0.
【详解】解:∵当x=2时,分式的值为0,
∴2x﹣m=2×2﹣m=0,解得:m=4;
∵当x=1时,分式无意义,
∴x+n=1+n=0解得:n=﹣1.
∴m+n=4﹣1=2、
故答案为2、
【点睛】本题主要考查了分式的值为0,分式无意义的条件,熟练掌握分式的值为0,分式无意义的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义是解题的关键.
12、A
【解析】(3,-4)
【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.
【详解】解:∵点A与点B(-3,4)关于x轴对称,
∴A(-3,-4),
∴点A关于y轴对称的点的坐标为(3,-4).
故答案为:(3,-4).
【点睛】本题考查了关于x轴、y轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数;关于y轴对称的点的纵坐标相等,横坐标互为相反数是解题的关键.
13、
【分析】先利用乘法公式算出的值,再根据分式的加法运算算出结果.
【详解】解:∵,,
∴,
∴.
故答案为:.
【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.
14、10
【分析】原式利用同底数幂的除法法则变形,将已知等式代入计算即可求出值.
【详解】解:,即,
∴原式=.
故答案为:10
【点睛】此题考查了同底数幂的除法,熟练掌握运算法则是解本题的关键.
15、4
【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC,则CE即为CM+MN的最小值,再根据BC=8,∠ABC=30°,由直角三角形的性质即可求出CE的长.
【详解】解:过点
【解析】4
【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC,则CE即为CM+MN的最小值,再根据BC=8,∠ABC=30°,由直角三角形的性质即可求出CE的长.
【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC,
∵BD平分∠ABC,
∴M′E=M′N′,
∴M′N′+CM′=EM′+CM′=CE,
则CE即为CM+MN的最小值,
在Rt中, BC=8,∠ABC=30°,
∴CM+MN的最小值是3、
故答案为:3、
【点睛】本题考查的是轴对称-最短路线问题,根据题意作出辅助线,构造出直角三角形,含有30°的直角三角形的性质求解是解答此题的关键.
16、±4
【分析】利用完全平方公式的结构特征判断即可确定出m的值.
【详解】解:∵x2+mx+4是一个完全平方式,
∴m=±4,
故答案为:±3、
【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解
【解析】±4
【分析】利用完全平方公式的结构特征判断即可确定出m的值.
【详解】解:∵x2+mx+4是一个完全平方式,
∴m=±4,
故答案为:±3、
【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
17、25
【分析】设,得到关于k的等式,利用配方法和非负数的性质即可求解.
【详解】解:设,
∴a-1=2k,b+1=3k,c-2=4k,即a=2k+1,b=3k-1,c=4k+2,
∴a2+b2−c2
【解析】25
【分析】设,得到关于k的等式,利用配方法和非负数的性质即可求解.
【详解】解:设,
∴a-1=2k,b+1=3k,c-2=4k,即a=2k+1,b=3k-1,c=4k+2,
∴a2+b2−c2= (2k+1)2+(3k-1)2−(4k+2)2
=4k2+4k+1+9k2-6k+1-(16k2+16k+4)
=4k2+4k+1+9k2-6k+1-16k2-16k-4
=-3k2-18k-2
=-3(k2+6k+9-9)-2
=-3(k+3) 2+25
∵(k+3) 2≥0,则-3(k+3) 2≤0,
∴a2+b2−c2的最大值为25,
故答案为:24、
【点睛】本题考查了比例的性质,完全平方公式,掌握配方法和非负数的性质是解题的关键.
18、或##或
【分析】分两种情形:①当≌时,可得:;②当≌时,, 根据全等三角形的性质分别求解即可.
【详解】解:①当≌时,可得:,
运动时间相同,
,的运动速度也相同,
;
②当≌时,
,,
,
,
【解析】或##或
【分析】分两种情形:①当≌时,可得:;②当≌时,, 根据全等三角形的性质分别求解即可.
【详解】解:①当≌时,可得:,
运动时间相同,
,的运动速度也相同,
;
②当≌时,
,,
,
,
故答案为:或.
【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题.
三、解答题
19、(1)
(2)
【分析】对于(1),根据平方差公式计算即可;
对于(2),先提出公因式a,再根据完全平方公式分解即可.
(1)
原式=x2-32
;
(2)
原式
.
【点睛】本题主要考查了因式分解
【解析】(1)
(2)
【分析】对于(1),根据平方差公式计算即可;
对于(2),先提出公因式a,再根据完全平方公式分解即可.
(1)
原式=x2-32
;
(2)
原式
.
【点睛】本题主要考查了因式分解,掌握平方差公式和完全平方公式是解题的关键.
20、原方程无解.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解.
【详解】将分式两边同时乘以可得:,
可化为: ,即
经检验使公分母,
是原分式方程的增根
【解析】原方程无解.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解.
【详解】将分式两边同时乘以可得:,
可化为: ,即
经检验使公分母,
是原分式方程的增根舍去,
原方程无解.
【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
21、见解析
【分析】由BE=CF,可得出BE+EC=EC+CF,即BC=EF,结合∠B=∠DEF,∠ACB=∠F,即可证出△ABC≌△DEF(ASA),再利用全等三角形的性质即可证出∠A=∠D.
【详解
【解析】见解析
【分析】由BE=CF,可得出BE+EC=EC+CF,即BC=EF,结合∠B=∠DEF,∠ACB=∠F,即可证出△ABC≌△DEF(ASA),再利用全等三角形的性质即可证出∠A=∠D.
【详解】证明:∵BE=CF,
∴BE+EC=EC+CF,
即BC=EF.
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴∠A=∠D.
【点睛】本题考查了全等三角形的判定与性质,利用全等三角形的判定定理ASA,证出△ABC≌△DEF是解题的关键.
22、(1)答案见解析
(2)2(∠BMC+∠AEB)=3∠CAB,证明见解析
【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠
【解析】(1)答案见解析
(2)2(∠BMC+∠AEB)=3∠CAB,证明见解析
【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠FCD,即可得到结论;
(2)设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,根据已知条件得到 ,由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,于是得到2(∠BMC+∠E)=2()=6,等量代换即可得到结论.
(1)
解:如图1,过F作FH∥AB,
∵AB∥CD,
∴FH∥CD,
∴∠1=∠2,∠3=∠FDC,
∵∠2=∠ABE,
∴∠1=ABE,
∵∠BFC=∠1+∠3,
∴∠BFC=∠ABE+∠FCD,
∵∠ABE=∠BFC,
∴∠AEB=∠ABE+∠DCF;
(2)
解:设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,
∵∠BCF=2∠ABE,
∴,即,
由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,
∴2(∠BMC+∠E)=2()=6,
∵3∠CAB=3(∠E+∠ABE)=3()=6,
∴2(∠BMC+∠AEB)=3∠CAB.
【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角与外角的关系,解题的关键是熟练掌握平行线的性质.
23、(1)
(2)15名
【分析】(1)根据x名工人10天恰好生产3万个粽子,即可求得;
(2)根据该订单共生产3万个粽子列分式方程,求解即可.
(1)
解:每名工人每天应生产蛋黄肉粽=(个),
故答案
【解析】(1)
(2)15名
【分析】(1)根据x名工人10天恰好生产3万个粽子,即可求得;
(2)根据该订单共生产3万个粽子列分式方程,求解即可.
(1)
解:每名工人每天应生产蛋黄肉粽=(个),
故答案为:;
(2)
根据题意,得,
解得x=15,
经检验,x=15是原方程的根,且符合题意;
答:食品工厂一车间原计划安排了15名工人生产蛋黄肉粽.
【点睛】本题考查了分式方程的应用,表示出每名工人的生产效率并根据题意找出等量关系是解题的关键.
24、(1)-15 (2)76
【分析】(1)利用完全平方公式,先求出(a2+b2)的值,再计算(a-b)(a2+b2)的值;
(2)把m-n-P=-10变形为[(m-p)-n],利用完全平方
【解析】(1)-15 (2)76
【分析】(1)利用完全平方公式,先求出(a2+b2)的值,再计算(a-b)(a2+b2)的值;
(2)把m-n-P=-10变形为[(m-p)-n],利用完全平方公式仿照例题计算得结论.
【详解】解:(1)因为(a-b)2=(-3)2,
所以a2-2ab+b2=9,
又∵ab=-2
∴a2+b2=9-4=5,
∴(a-b)(a2+b2)
=(-3)×5
=-15
(2)∵(m-n-p)2=(-10)2=100,
即[(m-p)-n]2=100,
∴(m-p)2-2n(m-p)+n2=100,
∴(m-p)2+n2=100+2n(m-p)
=100+2(-12)
=75、
【点睛】本题主要考查了整式乘法的完全平方公式,熟练掌握完全平方公式的变形是解决本题的关键.
25、(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)由OA=
【解析】(1)△AOB为等腰直角三角形;理由见解析
(2)BN=3
(3)PB的长为定值;
【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OA=OB,即可确定△AOB的形状;
(2)由OA=OB,利用AAS得到△AMO≌△ONB,用对应线段相等求长度;
(3)如图,作EK⊥y轴于K点,利用AAS得到△AOB≌△BKE,利用全等三角形对应边相等得到OA=BK,EK=OB,再利用AAS得到△PBF≌△PKE,寻找相等线段,并进行转化,求PB的长.
(1)
解:结论:△OAB是等腰直角三角形;理由如下:
∵+b2-10b+25=0,即,
∴,解得:,
∴A(−5,0),B(0,5),
∴OA=OB=5,
∴△AOB是等腰直角三角形.
(2)
解:∵AM⊥OQ,BN⊥OQ,
∴,
,
∴,
∴,
∵在△AMO与△ONB中,
∴△AMO≌△ONB(AAS),
∴AM=ON=4,BN=OM,
∵MN=7,
∴OM=3,
∴BN=OM=2、
(3)
解:结论:PB的长为定值.理由如下,
作EK⊥y轴于K点,如图所示:
∵△ABE为等腰直角三角形,
∴AB=BE,∠ABE=90°,
∴∠EBK+∠ABO=90°,
∵∠EBK+∠BEK=90°,
∴∠ABO=∠BEK,
∵在△AOB和△BKE中,
∴△AOB≌△BKE(AAS),
∴OA=BK,EK=OB,
∵△OBF为等腰直角三角形,
∴OB=BF,
∴EK=BF,
∵在△EKP和△FBP中,
∴△PBF≌△PKE(AAS),
∴PK=PB,
∴PB=BK=OA=.
【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键.
展开阅读全文