资源描述
深圳松岗中英文实验学校八年级上册期末数学试卷含答案
一、选择题
1、我国信息技术飞速发展,下列标志中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
2、2021年11月3日揭晓的2020年度国家自然科学奖,共评出了两项一等奖,其中一项是“有序介孔高分子和碳材料的创制应用”.有序介孔材料是上世纪90年代迅速兴起的新型纳米材料,孔径在0.000000002米~0.000000005米范围内.数据0.000000005用科学记数法可表示为( )
A.5×10-9 B.5×10-8 C.5×10-7 D.0.5×10-7
3、计算(a2+ab)÷a的结果是( )
A.a+b B.a2+b C.a+ab D.a3+a2b
4、若分式 有意义,则x的取值范围是( )
A.x> -1 B.x < -1 C.x≠ -1 D.x≠0
5、下列各式从左到右的变形中,是因式分解的为( )
A. B.
C. D.
6、下列式子从左边至右边变形错误的是( )
A. B. C. D.
7、如图,点D、E分别在线段AB、AC上,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠AEB=∠ADC B.BE=CD C.∠B=∠C D.AD=AE
8、已知关于x的分式方程的解为正数,关于y的不等式组,恰好有三个整数解,则所有满足条件的整数a的和是( )
A.1 B.3 C.4 D.6
9、如图,是的外角,平分,若,,则等于( )
A.40° B.50° C.45° D.55°
二、填空题
10、已知的周长相等,现有两个判断:①若,则;②若,,则,对于上述的两个判断,下列说法正确的是( )
A.①,②都正确 B.①,②都错误
C.①错误,②正确 D.①正确,②错误
11、若分式值为,则的值为______.
12、在平面直角坐标系中,若点P(a﹣3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是_______.
13、已知,则实数A-B=_________.
14、已知,则=_____.
15、已知,点为射线上一点,点为的中点,且.当点在射线上运动时 ,则与和的最小值为_______.
16、若 是一个完全平方式,则 的值为________________.
17、若,,则________.
18、如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为___厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.
三、解答题
19、因式分解:
(1)
(2)
20、解下列分式方程:
(1)+=1;
(2)﹣1=.
21、已知:如图,点、、、在一条直线上,、两点在直线的同侧,,,.
求证:.
22、如果三角形的两个内角与满足,那么我们称这样的三角形为“准直角三角形”.
(1)关于“准直角三角形”,下列说法:
①在中,若,,,则是准直角三角形;
②若是“准直角三角形”, ,,则;
③“准直角三角形”一定是钝角三角形.其中,正确的是 .(填写所有正确结论的序号)
(2)如图①,在中,,是的角平分线.
求证:是“准直角三角形”.
(3)如图②,、为直线上两点,点在直线外,且.若是上一点,且是“准直角三角形”,请直接写出的度数.
23、某部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了9小时完成任务.
(1)按原计划完成总任务的时,已抢修道路_____________米;
(2)求原计划每小时抢修道路多少米?
24、我们知道整数除以整数(其中),可以用竖式计算,例如计算可以用整式除法如图:,所以.
类比此方法,多项式除以多项式一般也可以用竖式计算,步骤如下:
①把被除式,除式按某个字母作降幂排列,并把所缺的项用零补齐;
②用被除式的第一项除以除式第一项,得到商式的第一项;
③用商式的第一项去乘除式,把积写在被除式下面(同类对齐),消去相等项;
④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.
例如:计算.
可用整式除法如图:
所以除以
商式为,余式为0
根据阅读材料,请回答下列问题:
(1) .
(2),商式为 ,余式为 .
(3)若关于的多项式能被三项式整除,且均为整数,求满足以上条件的的值及商式.
25、如图,等边中,点在上,延长到,使,连,过点作与点.
(1)如图1,若点是中点,
求证:①;②.
(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;
(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论.
一、选择题
1、A
【解析】A
【分析】根据中心对称图形与轴对称图形的概念进行判断即可.
【详解】解:A.既是中心对称图形,也是轴对称图形,故此选项符合题意;
B.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
C.是中心对称图形,不是轴对称图形,故此选项不合题意;
D.不是中心对称图形,是轴对称图形,故此选项不合题意;
故选:A.
【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.
2、A
【解析】A
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:数据0.000000005用科学记数法表示为5×10-8、
故选:A.
【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3、A
【解析】A
【分析】利用多项式除以单项式的运算法则进行计算即可.
【详解】解:(a2+ab)÷a=a+b,
故选:A.
【点睛】本题考查了多项式除以单项式,正确的计算是解题的关键.
4、C
【解析】C
【分析】根据分式有意义的条件进行解答即可.
【详解】解:要使有意义,则,
即,故C正确.
故选:C.
【点睛】本题主要考查了分式有意义的条件,熟练掌握使分式有意义,则分母不等于0,是解题的关键.
5、A
【解析】A
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.
【详解】解:A、从左到右的变形属于因式分解,故本选项符合题意;
B、从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C、等式的左边不是多项式,故本选项不符合题意;
D、等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:A.
【点睛】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.
6、A
【解析】A
【分析】根据分式的基本性质即可求出答案.
【详解】解:A.当c=0时,此时没有意义,故A符合题意;
B. ,故B不符合题意;
C.,故C不符合题意;
D.,故D不符合题意.
故选:A.
【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
7、B
【解析】B
【分析】根据全等三角形的判定条件逐一判断即可.
【详解】解:由题意得AB=AC,∠A=∠A
添加∠AEB=∠ADC,可以利用AAS证明两个三角形全等,故A不符合题意;
添加BE=CD,不能利用SSA证明两个三角形全等,故B符合题意;
添加∠B=∠C,可以利用ASA证明两个三角形全等,故C不符合题意;
添加AD=AE,可以利用SAS证明两个三角形全等,故D不符合题意;
故选B.
【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
8、C
【解析】C
【分析】根据分式方程解的情况,求得的范围,解不等式组确定的范围,进而求得的整数解,求和即可求解.
【详解】解:
去分母得,,
解得 ,
时,方程产生增根,
,即
,
且,
,
解不等式①得:,
解不等式②得:,
不等式组有解,
∴不等式组的解集为:,
恰好有三个整数解,
,
解得,
又且,
且,
整数为,其和为1+3=4,
故选C.
【点睛】本题考查了解分式方程,一元一次不等式组,正确的计算是解题的关键.
9、D
【解析】D
【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.
【详解】解:∵∠A=70°,∠B=40°,
∴∠ACD=∠A+∠B=110°,
∵CE平分∠ACD,
∴∠ECD=∠ACD=55°,
故选:D.
【点睛】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.
二、填空题
10、A
【解析】A
【分析】根据即可推出△△,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.
【详解】解:①△,△的周长相等,,,
,
△△,
①正确;
②如图,延长到,使,,延长到,使,
∴,,
∵的周长相等,
∴,
在△和△中
,
∴ △△(SAS)
∴,
∵,
∴,,
又∵,,
∴,
在△和△中
,
△△(AAS),
②正确;
综上所述:①,②都正确.
故选:A.
【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有,,,,而和不能判断两三角形全等.
11、2
【分析】根据分式值为零及分式有意义的条件列方程及不等式求解.
【详解】解:由题意可得,
解得:,
故答案为:.
【点睛】本题考查分式值为零的条件,理解当分子为零且分母不等于零时分式的值为零是解题关键.
12、3
【分析】掌握关于x轴对称的点,横坐标不变,纵坐标互为相反数,即可得出答案.
【详解】由题意可得:,
解得:,因此a+b=2、
故答案为:2、
【点睛】本题考查了关于坐标轴对称的点的特征,准确找出横纵坐标的关系是本题的关键.
13、A
【解析】-17
【分析】先计算出,再根据已知等式得出A、B的方程组,解之可得.
【详解】
=,
∵,
∴,
解得:,
∴A- B=-7-10=-17,
故答案为-16、
【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则,并根据题意得出关于A、B的方程组.
14、
【分析】先根据幂的乘方求出,再根据同底数幂的除法的逆运算法则求解即可.
【详解】解:∵,
∴,
∴,
故答案为:.
【点睛】本题主要考查了幂的乘方,同底数幂除法的逆运算,熟知相关计算法则是解题的关键.
15、【分析】作点D关于OA的对称点D′,连接CD′交OA于点P′,连接DP,,根据轴对称的性质得到P′D′=P′D,此时DP′+CP′=CD′即为PC+PD的最小值,根据已知条件计算求出结果即可.
【
【解析】
【分析】作点D关于OA的对称点D′,连接CD′交OA于点P′,连接DP,,根据轴对称的性质得到P′D′=P′D,此时DP′+CP′=CD′即为PC+PD的最小值,根据已知条件计算求出结果即可.
【详解】解:作点D关于OA的对称点D′,连接CD′交OA于点P′,连接DP′,根据轴对称的性质得到P′D′=P′D,此时DP′+CP′=CD′即为PC+PD的最小值.
设DD′与OA交于点E,
∵∠O=30°,OD=3,由对称性可知∠DEO=90°,
∴∠ODE=60°,DE=OD=,
∴DD′=2DE=3,∴DD′=CD,
∴∠D′=∠DCD′=∠ODE=30°,∴∠EDP′=∠D′=30°,
∴∠ODP′=∠ODE+∠EDP′=90°,
∴在Rt△ODP′中,∠O=30°,OD=3,∴DP′=
∴CP′=2DP′=2
∴DP′+CP′=3
故与和的最小值为3
【点睛】本题考查了轴对称-最短路线问题,两点之间线段最短的性质.得出动点所在的位置是解题的关键.
16、或
【分析】根据完全平方公式的特点即可确定k的值.
【详解】∵
∴或
故答案为: 或
【点睛】本题考查了完全平方式,两数的平方和加上或减去这两个数的积的2倍,即为完全平方式,掌握此特点是解题的
【解析】 或
【分析】根据完全平方公式的特点即可确定k的值.
【详解】∵
∴或
故答案为: 或
【点睛】本题考查了完全平方式,两数的平方和加上或减去这两个数的积的2倍,即为完全平方式,掌握此特点是解题的关键,但要注意不要忽略负的情况.
17、3
【分析】由题意直接运用完全平方公式进行变形,进而整体代入即可得出答案.
【详解】解:.
故答案为:3.
【点睛】本题考查已知式子求代数式的值和完全平方公式,熟练掌握是解题的关键.
【解析】3
【分析】由题意直接运用完全平方公式进行变形,进而整体代入即可得出答案.
【详解】解:.
故答案为:3.
【点睛】本题考查已知式子求代数式的值和完全平方公式,熟练掌握是解题的关键.
18、或3
【分析】分两种情况讨论,当时,可得 当时,可得再建立方程求解即可.
【详解】解: 点E为线段AB的中点,AB=12厘米,
厘米,
设运动时间为秒,的运动速度为每秒厘米,而BC=8厘米,
则
【解析】或3
【分析】分两种情况讨论,当时,可得 当时,可得再建立方程求解即可.
【详解】解: 点E为线段AB的中点,AB=12厘米,
厘米,
设运动时间为秒,的运动速度为每秒厘米,而BC=8厘米,
则
当时,
解得:
当时,
解得:
综上:当点Q的运动速度为每秒厘米或每秒3厘米时,△BPE与以C、P、Q三点所构成的三角形全等
故答案为:或3
【点睛】本题考查的是全等三角形的判定与性质,一元一次方程的应用,分类讨论思想的应用,明确 再确定分类讨论的依据是解题的关键.
三、解答题
19、(1)
(2)
【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可;
(2)先提公因式-4x,再利用完全平方公式分解因式求解即可.
(1)
解:
;
(2)
解:
.
【点睛】本题考
【解析】(1)
(2)
【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可;
(2)先提公因式-4x,再利用完全平方公式分解因式求解即可.
(1)
解:
;
(2)
解:
.
【点睛】本题考查提公因式法和公式法分解因式,熟记公式,正确求解是解答关键.
20、(1)x=0;(2)无解
【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验.
【详解】解:(1)∵+=1,
∴﹣=1,
方程两边同时乘(x﹣1),可
【解析】(1)x=0;(2)无解
【分析】(1)(2)首先将分式方程转化为整式方程,然后解整式方程,注意求出的整式方程的解要进行检验.
【详解】解:(1)∵+=1,
∴﹣=1,
方程两边同时乘(x﹣1),可得:1﹣2=x﹣1,
解得:x=0,
经检验:x=0是原分式方程的解,
∴原分式方程的解为:x=0.
(2)∵﹣1=,
∴﹣1=,
方程两边同时乘(x+2)(x﹣2),可得:x(x+2)﹣(x+2)(x﹣2)=8,
整理得:2x﹣4=0,
解得x=2,
检验:当x=2时,(x+2)(x﹣2)=0,
∴原分式方程无解.
【点睛】此题主要考查了解分式方程,解答此题的关键是要明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
21、见解析
【分析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.
【详解】∵AB∥DE,
∴∠ABC=∠DEF,
∵BE=CF,
∴BC=EF,
在△ABC和△
【解析】见解析
【分析】利用平行线的性质推知∠ABC=∠DEF,由AAS证得△ABC≌△DEF,即可得出结论.
【详解】∵AB∥DE,
∴∠ABC=∠DEF,
∵BE=CF,
∴BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS),
∴AC=DF.
【点睛】本题考查三角形全等的判定与性质以及平行线的性质;证明三角形全等是解题的关键.
22、(1)①
(2)证明见解析
(3)当,,,时,满足条件
【分析】(1)只要证明,即可判断.
(2)根据“准直角三角形”的定义即可判断.
(3)根据“准直角三角形”的定义,分类讨论即可解决问题.
(1
【解析】(1)①
(2)证明见解析
(3)当,,,时,满足条件
【分析】(1)只要证明,即可判断.
(2)根据“准直角三角形”的定义即可判断.
(3)根据“准直角三角形”的定义,分类讨论即可解决问题.
(1)
①,,
,
是“准直角三角形”.
故①正确.
②三角形的两个内角与满足,那么我们称这样的三角形为“准直角三角形”,
,
三角形的第三个角大于,
由已知得
又,
故②错误,
③正确.②中已经证明.
故答案为①③.
(2)
在中,,
,
是的角平分线,
,
,
是“准直角三角形”.
(3)
如图②中,当,,,时,满足条件,是“准直角三角形”.
【点睛】本题主要考查了三角形内角和定理,“准直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.
23、(1)900
(2)原计划每小时抢修道路300米
【分析】(1)按原计划完成总任务的时,列式计算即可;
(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=9,等量关系列
【解析】(1)900
(2)原计划每小时抢修道路300米
【分析】(1)按原计划完成总任务的时,列式计算即可;
(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=9,等量关系列出方程.
(1)
解:(1)按原计划完成总任务的时,已抢修道路为(米),
答:按原计划完成总任务的时,已修建道路900米;
故答案为:900;
(2)
解:设原计划每小时抢修道路米,根据题意得:
,
解得:.
经检验:是原方程的解.
答:原计划每小时抢修道路300米.
【点睛】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工作效率.
24、(1);(2),;(3)a= -3,b=7,商式为(2x-1).
【分析】(1)模仿例题,可用竖式计算;
(2)模仿例题,可用竖式计算;
(3)设商式为(x+m),则有=(2x+m)()=2x3+(
【解析】(1);(2),;(3)a= -3,b=7,商式为(2x-1).
【分析】(1)模仿例题,可用竖式计算;
(2)模仿例题,可用竖式计算;
(3)设商式为(x+m),则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m,根据对应项系数相等即可解决问题.
【详解】(1) .
∴.
(2),
∴,商式为,余式为.
(3)设商式为(2x+m),
则有=(2x+m)()=2x3+(m-2)x2+(6-m)x+3m,
∴-3=3m,
∴m=-1,
∴a=m-2=-1-2=-3,b=6-m=6-(-1)=7,商式为(2x-1),
【点睛】本题考查整式的除法,解题的关键是理解被除式=除式×商式+余式,学会模仿解题.
25、(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论;
(3
【解析】(1)①见解析;②见解析
(2)成立,见解析
(3)成立,见解析
【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;
(2) 仍然成立,过点D作DM//BC交AC于M,证明,可得结论;
(3)结论仍然成立,过点D作DM//BC交AC于M,证明,可得结论.
(1)
证明:如图
①∵为等边三角形,
∴,
又为中点,
∴ ,
∵,
∴ ,
∴,
∴;
②∵,
∴为等腰三角形,
∵,
∴.
(2)
仍然成立,理由如下:
如图,过点D作DM//BC交AC于M
∵为等边三角形,
∴,
∴,
∵,
∴,
∴,为等边三角形,
∴,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,
而,
∴.
(3)
的结论仍然成立,理由如下:如图为所求作图.
作交的延长线于,
易证为等边三角形,
,,
而,
∴,
∵,,
∴,
∵,,
∴,
在和中,
,
∴,
∴,
∵,
∴.
【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题.
展开阅读全文