资源描述
一、选择题
1.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( )
A. B. C. D.
2.如图,则与的数量关系是( )
A. B.
C. D.
3.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( )
A.102° B.108° C.124° D.128°
4.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于( )
A.70° B.80° C.90° D.100°
5.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3( )
A.70° B.180° C.110° D.80°
6.如图,已知AB∥CD, EF∥CD,则下列结论中一定正确的是( )
A.∠BCD= ∠DCE; B.∠ABC+∠BCE+∠CEF=360;
C.∠BCE+∠DCE=∠ABC+∠BCD; D.∠ABC+∠BCE -∠CEF=180.
7.给出下列说法:
(1)两条直线被第三条直线所截,同位角相等;
(2)不相等的两个角不是同位角;
(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;
(5)过一点作已知直线的平行线,有且只有一条.
其中真命题的有( )
A.0个 B.1个 C.2个 D.3个
8.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( ).
A.20° B.80° C.160° D.20°或160°
9.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( )
A.30° B.40° C.60° D.70°
10.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为( )
A.22° B.22.5° C.30° D.45°
二、填空题
11.一副三角尺按如图所示叠放在一起,其中点重合,若固定三角形,将三角形绕点顺时针旋转一周,共有 _________次 出现三角形的一边与三角形AOB的某一边平行.
12.如图,已知,、的交点为,现作如下操作:
第一次操作,分别作和的平分线,交点为,
第二次操作,分别作和的平分线,交点为,
第三次操作,分别作和的平分线,交点为,
…
第次操作,分别作和的平分线,交点为.
若度,那等于__________度.
13.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.
14.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.
15.如图,△ABC沿AB方向平移3个单位长度后到达△DEF的位置,BC与DF相交于点O,连接CF,已知△ABC的面积为14,AB=7,S△BDO﹣S△COF=___.
16.如图,将长方形沿折叠,点落在边上的点处,点落在点处,若,则等于______.
17.如图,,,平分交于点.如果,则__.
18.如图,直线,与直线,分别交于,,与直线,分别交于,,若,,则_________度.
19.把一张对边互相平行的纸条,折成如图所示,是折痕,若,则下列结论:(1);(2);(3);(4).正确的有________个.
20.如图,,平分,平分,若设,则______度(用x,y的代数式表示),若平分,平分,可得,平分,平分,可得…,依次平分下去,则_____度.
三、解答题
21.已知,AB∥DE,点C在AB上方,连接BC、CD.
(1)如图1,求证:∠BCD+∠CDE=∠ABC;
(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;
(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.
22.(1)(问题)如图1,若,,.求的度数;
(2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由;
(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数.
23.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.
(1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC?
(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;
(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.
24.综合与探究
(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动
(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;
(问题迁移)
(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,
①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.
②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.
25.如图,已知,是的平分线.
(1)若平分,求的度数;
(2)若在的内部,且于,求证:平分;
(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.
【详解】
解:由题意得:AG∥BE∥CD,CF∥BD,
∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°
∴∠CFB=∠CDB
∴∠CAG=∠CDB
由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°
∴∠CAG=∠CDB=∠1+∠BAG=2α
∴∠2=180°-2∠BDC=180°-4α
故选D.
【点睛】
本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.
2.D
解析:D
【分析】
先设角,利用平行线的性质表示出待求角,再利用整体思想即可求解.
【详解】
设
则
∵
∴
∴
故选:D.
【点睛】
本题考查了平行线的性质,关键是熟练掌握平行线的性质,注意整体思想的运用.
3.A
解析:A
【分析】
先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BFE=∠DEF=26°,
∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,
故选A.
【点睛】
本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.
4.B
解析:B
【详解】
因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,
所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.
5.C
解析:C
【详解】
【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.
【详解】作AB∥a,由直线a平移后得到直线b,
所以,AB∥a∥b
所以,∠2=180°-∠1+∠3,
所以,∠2-∠3=180°-∠1=180°-70°=110°.
故选C
【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.
6.D
解析:D
【解析】
分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.
详解:延长DC到H
∵AB∥CD,EF∥CD
∴∠ABC+∠BCH=180°
∠ABC=∠BCD
∠CE+∠DCE=180°
∠ECH=∠FEC
∴∠ABC+∠BCE+∠CEF=180°+∠FEC
∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.
故选D.
点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.
7.B
解析:B
【详解】
试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;
同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;
平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;
从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;
过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.
故选B.
8.D
解析:D
【详解】
试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,
∴∠B和∠A可能相等也可能互补,
即∠B的度数是20°或160°,
故选D.
9.A
解析:A
【分析】
过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
,
,
,
故选:A.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.
10.B
解析:B
【分析】
过作,过作,利用平行线的性质解答即可.
【详解】
解:过作,过作,
,
,
,,
,,
,,,
,
.
故选:B.
【点睛】
此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.
二、填空题
11.【分析】
要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.
【详解】
解:分10种情况讨论:
(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;
解析:
【分析】
要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.
【详解】
解:分10种情况讨论:
(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;
(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;
(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,
(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,
(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;
(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°
(7)如图7,DC边与AB边平行时,∠BAD=30°,
(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;
综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.
故答案为:8.
【点睛】
本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.
12.【分析】
先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,
解析:
【分析】
先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE1∠ABE∠DCE∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2∠ABE1∠DCE1∠CE1B∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C∠BEC;…据此得到规律∠En∠BEC,最后求得∠BEC的度数.
【详解】
如图1,过E作EF∥AB.
∵AB∥CD,
∴AB∥EF∥CD,
∴∠B=∠1,∠C=∠2.
∵∠BEC=∠1+∠2,
∴∠BEC=∠ABE+∠DCE;
如图2.
∵∠ABE和∠DCE的平分线交点为E1,
∴∠CE1B=∠ABE1+∠DCE1∠ABE∠DCE∠BEC.
∵∠ABE1和∠DCE1的平分线交点为E2,
∴∠BE2C=∠ABE2+∠DCE2∠ABE1∠DCE1∠CE1B∠BEC;
∵∠ABE2和∠DCE2的平分线,交点为E3,
∴∠BE3C=∠ABE3+∠DCE3∠ABE2∠DCE2∠CE2B∠BEC;
…
以此类推,∠En∠BEC,
∴当∠En=1度时,∠BEC等于2n度.
故答案为:2n.
【点睛】
本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
13.27°.
【分析】
延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.
【详解】
解:延长FA与直线MN交于点K,
由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD
解析:27°.
【分析】
延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.
【详解】
解:延长FA与直线MN交于点K,
由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,
因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,
所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,
所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.
故∠ACD的度数是:27°.
【点睛】
本题利用平行线、垂直、角平分线综合考查了角度的求解.
14.【分析】
延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;
【详解】
延长AB,交两平行线与C、D,
∵直线l1∥l2,∠A=125°,∠B=85°,
∴,,,
∴,
∴,
解析:
【分析】
延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;
【详解】
延长AB,交两平行线与C、D,
∵直线l1∥l2,∠A=125°,∠B=85°,
∴,,,
∴,
∴,
又∵∠1比∠2大4°,
∴,
∴,
∴;
故答案是.
【点睛】
本题主要考查了平行线的性质应用,准确计算是解题的关键.
15.2
【分析】
如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.
【详解】
解:如图,连接CD,过点C作CG⊥AB于
解析:2
【分析】
如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.
【详解】
解:如图,连接CD,过点C作CG⊥AB于G.
∵S△ABC=•AB•CG,
∴CG==4,
∵AD=CF=3,AB=7,
∴BD=AB﹣AD=7﹣3=4,
∴S△BDO﹣S△COF=S△CDB﹣S△CDF=,
故答案为:2.
【点睛】
本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题.
16.105°
【分析】
根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.
【详解】
解:∵将长方形ABCD沿EF折叠,点D落在AB边上
解析:105°
【分析】
根据折叠得出∠DEF=∠HEF,求出∠DEF的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.
【详解】
解:∵将长方形ABCD沿EF折叠,点D落在AB边上的H点处,点C落在点G处,
∴∠DEF=∠HEF,
∵∠AEH=30°,
∴,
∵四边形ABCD是长方形,
∴AD∥BC,
∴∠DEF+∠EFC=180°,
∴∠EFC=180°-75°=105°,
故答案为:105°.
【点睛】
本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF=∠HEF和∠DEF+∠EFC=180°是解此题的关键.
17.33
【分析】
根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.
【详解】
解:∵,,
∴∠
解析:33
【分析】
根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.
【详解】
解:∵,,
∴∠,且
∴
∵∠CAD=24°
∴∠BAC=90°-∠CAD=90°-24°=66°,
∵AE是∠BAC的平分线
∴∠EAB=
∵,
∴
故答案为:33
【点睛】
此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.
18.131
【分析】
过点C作CH∥MN,根据平行线的性质求出∠NEC即可.
【详解】
解:过点C作CH∥MN,
∵,
∴CH∥PQ,
∴,
∵,
∴,
∵CH∥MN,
∴,
∴
故答案为:131.
解析:131
【分析】
过点C作CH∥MN,根据平行线的性质求出∠NEC即可.
【详解】
解:过点C作CH∥MN,
∵,
∴CH∥PQ,
∴,
∵,
∴,
∵CH∥MN,
∴,
∴
故答案为:131.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.
19.3
【分析】
(1)根据平行线的性质即可得到答案;
(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,
解析:3
【分析】
(1)根据平行线的性质即可得到答案;
(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确;
(3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确;
(4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果.
【详解】
解:(1)∵,∠EFB=32°,
∴∠C′EF=∠EFB=32°,故本小题正确;
(2)∵AE∥BG,∠EFB=32°,
∴∠AEF=180°-∠EFB=180°-32°=148°,
∵∠AEF=∠AEC+∠GEF,
∴∠AEC<148°,故本小题错误;
(3)∵∠C′EF=32°,
∴∠GEF=∠C′EF=32°,
∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,
∵AC′∥BD′,
∴∠BGE=∠C′EG=64°,故本小题正确;
(4)∵∠BGE=64°,
∴∠CGF=∠BGE=64°,
∵,
∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.
故正确的为:(1)(3)(4)共3个,
故答案为:3.
【点睛】
本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.
20.【分析】
过点P1作PG∥AB∥CD,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得.
【详解】
解:过点作∥AB,可得∥CD,
设,,
∴,,
解析:
【分析】
过点P1作PG∥AB∥CD,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得.
【详解】
解:过点作∥AB,可得∥CD,
设,,
∴,,
∴;
同理可得:,,...,
∵平分,平分,
∴,
,
...,
∴,
故答案为:,.
【点睛】
本题考查了平行线性质的应用和角平分线的定义,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题,属于中考常考题型.
三、解答题
21.(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;
(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.
【详解】
证明:(1)如图,过点作,
,
,
,
,即,
,
;
(2)如图,过点作,
,
,
,
,即,
,
,
,
,
;
(3)如图,过点作,延长至点,
,
,
,
,
平分,平分,
,
由(2)可知,,
,
又,
.
【点睛】
本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
22.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α
【分析】
(1)根据平行线的性质与判定可求解;
(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;
(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.
【详解】
解:(1)如图1,过点P作PM∥AB,
∴∠1=∠AEP.
又∠AEP=40°,
∴∠1=40°.
∵AB∥CD,
∴PM∥CD,
∴∠2+∠PFD=180°.
∵∠PFD=130°,
∴∠2=180°-130°=50°.
∴∠1+∠2=40°+50°=90°.
即∠EPF=90°.
(2)∠PFC=∠PEA+∠P.
理由:过P点作PN∥AB,则PN∥CD,
∴∠PEA=∠NPE,
∵∠FPN=∠NPE+∠FPE,
∴∠FPN=∠PEA+∠FPE,
∵PN∥CD,
∴∠FPN=∠PFC,
∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;
(3)令AB与PF交点为O,连接EF,如图3.
在△GFE中,∠G=180°-(∠GFE+∠GEF),
∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,
∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,
∵由(2)知∠PFC=∠PEA+∠P,
∴∠PEA=∠PFC-α,
∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,
∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α,
∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α.
【点睛】
本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.
23.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;
(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;
(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.
【详解】
解:(1)是,理由如下:
要使AD平分∠EAC,
则要求∠EAD=∠CAD,
由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,
则当∠ACB=∠B时,有AD平分∠EAC;
故答案为:是;
(2)∠B=∠ACB,理由如下:
∵AD平分∠EAC,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠B=∠EAD,∠ACB=∠CAD,
∴∠B=∠ACB.
(3)∵AC⊥BC,
∴∠ACB=90°,
∵∠EBF=50°,
∴∠BAC=40°,
∵AD∥BC,
∴AD⊥AC.
【点睛】
此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.
24.(1);(2)①,理由见解析;②图见解析,或
【分析】
(1)作PQ∥EF,由平行线的性质,即可得到答案;
(2)①过作交于,由平行线的性质,得到,,即可得到答案;
②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.
【详解】
解:(1)作PQ∥EF,如图:
∵,
∴,
∴,,
∵
∴;
(2)①;
理由如下:如图,
过作交于,
∵,
∴,
∴,,
∴;
②当点在延长线时,如备用图1:
∵PE∥AD∥BC,
∴∠EPC=,∠EPD=,
∴;
当在之间时,如备用图2:
∵PE∥AD∥BC,
∴∠EPD=,∠CPE=,
∴.
【点睛】
本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.
25.(1)90°;(2)见解析;(3)不变,180°
【分析】
(1)根据邻补角的定义及角平分线的定义即可得解;
(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;
(3),过,分别作,,根据平行线的性质及平角的定义即可得解.
【详解】
解(1),分别平分和,
,,
,
;
(2),
,即,
,
是的平分线,
,
,
又,
,
又在的内部,
平分;
(3)如图,不发生变化,,过,分别作,,
则有,
,,,,
,,
,
,,
,
,
不变.
【点睛】
此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.
展开阅读全文