资源描述
天津市益中学校八年级上册期末数学试卷
一、选择题
1、下列服装中是轴对称图形的是( )
A. B. C. D.
2、2020年6月23日上午9时43分,北斗三号系统第30颗卫星,同时也是整个北斗系统的第55颗卫星成功发射,北斗三号全球卫星导航系统星座部署全面完成.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.1纳米=0.000000001米,将22纳米用科学记数法表示为( )
A.米 B.米 C.米 D.米
3、下列计算正确的是( )
A.a2+a2=2a4 B.a2·a=a3 C.(3a)2=6a2 D.a6÷a2=a3
4、式子有意义的a的取值范围是( )
A.a≥1 B.a≥1且a≠0 C.a>1且a≠0 D.a≠0
5、下列各式从左到右的变形,是因式分解的是( )
A. B.
C. D.
6、下列各式从左到右变形不正确的是( )
A. B.
C. D.
7、如图,,给出下列条件:①,②,③,④,从中添加一个条件后,能证明的是( )
A.①②③ B.②③④ C.①②④ D.①③④
8、若关于的方程有增根,则的值为( )
A.-5 B.0 C.1 D.2
9、如图,,D在边上,,,则的度数为( )
A.35° B.40° C.50° D.65°
二、填空题
10、如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,连接DM 、ME、CM、DE, DE与CM相交于点F且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四边形CDME的面积发生改变.其中正确的结论有( )个.
A.2 B.3 C.4 D.5
11、若分式的值为零,则x的值为__.
12、点P(-2,4)关于x轴对称的点的坐标为________.
13、若,,则(n为非负整数)的值为__________.
14、计算:(﹣0.25)2021×42022=_____.
15、如图,将等边折叠,使点B恰好落在AC边上的点D处,折痕为EF,O为折痕EF上的动点,若AD=2,AC=6,则的周长最小值为______.
16、已知是完全平方式,则的值为______.
17、若,则______.
18、如图,Rt△ABC中,∠ACB=90°,CD是△ABC的高,BC=3cm,AB=5cm,现有一动点P,以1cm/s的速度从点C出发向点A匀速运动,到点A停止;同时,另一个动点Q,从点A出发向点B匀速运动,到点B停止.在两点运动过程中的某一时刻,△APQ恰好与△CBD全等,则点Q的运动速度为_____________cm/s.
三、解答题
19、因式分解
(1)x2y-4y
(2)2x2-12x+18
20、化简:
21、已知:如图,相交于点.
求证:
22、如图,将一副三角尺如此放置,,,,点D在边上,不动,将绕点D转动,使线段与相交,线段与相交.
(1)当时,如图1.求的度数;
(2)当与不平行时,如图2,的度数会不会变化?请说明由理.
23、某服装制造厂要在开学前赶制4800套校服,为了尽快完成任务,厂领导合理调配,加强一线人力,使每天制作的校服数量比原计划每天制作的数量增加40套,结果所用天数是原计划天数的.求原计划每天制作校服多少套.
24、如图,将边长为的正方形剪出两个边长分别为,的正方形(阴影部分).观察图形,解答下列问题:
(1)根据题意,用两种不同的方法表示阴影部分的面积,即用两个不同的代数式表示阴影部分的面积.
方法1:______,方法2:________;
(2)从中你发现什么结论呢?_________;
(3)运用你发现的结论,解决下列问题:
①已知,,求的值;
②已知,求的值.
25、完全平方公式:适当的变形,可以解决很多的数学问题.
例如:若,求的值.
解:因为
所以
所以
得.
根据上面的解题思路与方法,解决下列问题:
(1)若,求的值;
(2)①若,则 ;
②若则 ;
(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.
一、选择题
1、B
【解析】B
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【详解】解:A.不是轴对称图形,故本选项不合题意;
B.是轴对称图形,故本选项符合题意;
C.不是轴对称图形,故本选项不合题意;
D.不是轴对称图形,故本选项不合题意.
故选:B.
【点睛】此题主要考查了轴对称图形的识别,关键是正确确定对称轴位置.
2、C
【解析】C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】解:22纳米=22×0.000000001米=2.2×10−8米.
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【解析】B
【分析】根据合并同类项、同底数幂的乘法、积的乘方,同底数幂的除法,判断出正确答案为B.
【详解】A、,选项计算错误,不符合题意;
B、,选项计算正确,符合题意;
C、,选项计算错误,不符合题意;
D、,选项计算错误,不符合题意.
故选:B.
【点睛】本题主要考查知识点为:合并同类项、同底数幂的乘法、积的乘方,同底数幂的除法.熟练掌握上述运算方法,是解决本题的关键.
4、B
【解析】B
【分析】根据分式有意义的条件分母不等于0和二次根式有意义的条件被开方数为非负数求解即可.
【详解】解:由题意,得
,解得:a≥-1,且a≠0,
故选:B.
【点睛】本题考查分式有意义的条件,二次根式有意义的条件,熟练掌握分式有意义的条件分母不等于0和二次根式有意义的条件被开方数为非负数是解题的关键.
5、B
【解析】B
【分析】根据因式分解的定义判断是否分解成几个因式的乘积即可求解.
【详解】解:A、是整式的计算,故该选项不符合题意;
B. ,是因式分解,故正确;
C、,含有加法,不是因式分解,故该选项不符合题意;
D、,含有分式,故该选项不符合题意;
故选:B.
【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的定义.
6、B
【解析】B
【分析】根据分式的基本性质即可求解.
【详解】解:A. ,该选项变形正确,不符合题意;
B. ,该选项变形错误,符合题意;
C. ,该选项变形正确,不符合题意;
D. ,该选项变形正确,不符合题意;
故选:B.
【点睛】此题主要考查了分式的基本性质,熟练掌握分式的分子分母同时加上(或减去)同一个整式,分式的值不变;分式的分子分母同时乘以(或除以)同一个不等于0的整式,分式的值不变是解题的关键.
7、A
【解析】A
【分析】将条件分别代入条件中依次判断即可.
【详解】解:,
与均为直角三角形,
,,
,故①正确;
在与中,
,
,
,
,
,
,即
在与中,
,
,故②正确;
在与中,
,
,故③正确;
当时,不能推出,故④错误.
故选:A.
【点睛】本题主要考查三角形全等的判定,掌握三角形全等的判定定理是解题的关键.
8、A
【解析】A
【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答.
【详解】解:,
去分母得,m+1+2x=0,
解得:,
∵方程有增根,
∴x=2,
把x=2代入,得,
,
解得.
故选A.
【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.
9、D
【解析】D
【分析】由可知,是△ADC的一个外角,已知与它不相邻的两个内角,即可求出的度数.
【详解】∵
∴
∵在△ADC中,,
∴=30°+35°=65°
故选:D
【点睛】本题只要你考查了三角形的全等的性质,掌握全等三角形对应角相等以及三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.
二、填空题
10、B
【解析】B
【分析】根据等腰三角形的性质,三角形内角和定理,得出:△AMC≌△BMC、△AMD≌△CME、△CMD≌△BME,根据全等三角形的性质得出DM=ME得出△DEM是等腰三角形,及∠CDM=∠CFE,再逐个判断 即可得出结论.
【详解】解:如图
在Rt△ABC中,∠ACB=90°,M为AB中点,AB=BC
∴AM=CM=BM,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°
∵∠DME=90°.
∴∠1+∠2=∠2+∠3=∠3+∠4=90°
∴∠1=∠3,∠2=∠4
在△AMC和△BMC中
∴△AMC≌△BMC
在△AMD和△CME中
∴△AMD≌△CME
在△CDM和△BEM
∴△CMD≌△CME
共有3对全等三角形,故(1)错误
∵△AMD≌△BME
∴DM=ME
∴△DEM是等腰三角形,(2)正确
∵∠DME=90°.
∴∠EDM=∠DEM=45°,
∴∠CDM=∠1+∠A=∠1+45°,
∴∠EDM=∠3+∠DEM=∠3+45°,
∴∠CDM=∠CFE,故(3)正确
在Rt△CED中,
∵CE=AD,BE=CD
∴ 故(4)正确
(5)∵△ADM≌△CEM
∴
∴ 不变,故(5)错误
故正确的有3个
故选B
【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.
11、5
【分析】根据分式值为零的条件列式计算即可.
【详解】解:∵分式的值为零,
∴5-=0,x+5≠0,
解得:x=4、
故答案为:4、
【点睛】本题考查的是分式值为零的条件,分式值为零的条件是分子等于零且分母不等于零.
12、
【分析】根据关于轴对称的点的横坐标不变,纵坐标互为相反数即可求解.
【详解】解:点P(-2,4)关于x轴对称的点的坐标为,
故答案为:.
【点睛】本题考查了求关于轴对称的点的坐标,掌握关于坐标轴对称的点的坐标特征是解题的关键.
13、-1
【分析】将x变形,得到,将ab=1代入得到x=1,再代入中计算即可.
【详解】解:
=1,
∴,
故答案为:-1.
【点睛】本题考查了分式的加减运算,有理数的乘方,解题的关键是化简分式加法,求出x值.
14、﹣4
【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.
【详解】解:
.
故答案为:.
【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.
15、10
【分析】连接BD、OB,由折叠得OB=OD,根据等边三角形的性质求出BC,CD,当点B、O、C共线时,的周长最小,计算即得.
【详解】解:连接BD、OB,
由折叠得EF是BD的垂直平分线,
∴
【解析】10
【分析】连接BD、OB,由折叠得OB=OD,根据等边三角形的性质求出BC,CD,当点B、O、C共线时,的周长最小,计算即得.
【详解】解:连接BD、OB,
由折叠得EF是BD的垂直平分线,
∴OB=OD,
∵△ABC是等边三角形,AD=2,AC=6,
∴AC=BC=6,CD=AC-AD=6-2=4,
∴的周长=CD+OC+OD=4+OC+OB,
∴当点B、O、C共线时,的周长最小,最小值为4+BC=4+6=10,
故答案为:9、
.
【点睛】此题考查了轴对称的性质,三角形周长最小值,正确理解轴对称的性质及三点共线的性质是解题的关键.
16、【分析】根据完全平方式的特点“两数的平方和加(或减)这两个数的积的2倍”即可求出m的值.
【详解】解:∵是完全平方式,
∴-m=±2×2×3=±12,
∴m=±11、
故答案为:
【点睛】本题考查
【解析】
【分析】根据完全平方式的特点“两数的平方和加(或减)这两个数的积的2倍”即可求出m的值.
【详解】解:∵是完全平方式,
∴-m=±2×2×3=±12,
∴m=±11、
故答案为:
【点睛】本题考查完全平方式的定义,熟知完全平方式的特点是解题关键,注意本题有两个答案,不要漏解.
17、【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为.
【详解】解:,
,
,
,
把代入得:原式,
故答案为.
【点睛】.
本题主要考查知识点为:分式的加减,完全平方公
【解析】
【分析】根据条件,可得出,所以.将式子展开化简可得:.将代入,则原式,故答案为.
【详解】解:,
,
,
,
把代入得:原式,
故答案为.
【点睛】.
本题主要考查知识点为:分式的加减,完全平方公式.熟练掌握分式的加减方法和完全平方公式是解决此题的关键.
18、【分析】在Rt△ABC中,∠ACB=90°,先利用勾股定理求得BC,再用等面积法求得CD,再根据CD是△ABC的高,∠B+∠BCD=90°,而∠A+∠B=90°,进行等量代换可得到∠A=∠BCD,
【解析】
【分析】在Rt△ABC中,∠ACB=90°,先利用勾股定理求得BC,再用等面积法求得CD,再根据CD是△ABC的高,∠B+∠BCD=90°,而∠A+∠B=90°,进行等量代换可得到∠A=∠BCD,因此△APQ恰好与△CBD全等,对应边可能是AP=BC,AQ=CD,或者AP=CD,AQ=BC,设点Q的运动速度为cm/s,运动时间为t秒,列方程组计算即可.
【详解】解:∵∠ACB=90°,BC=3cm,AB=5cm,
∴cm,
∵,
∴cm,
设点Q的运动速度为cm/s,运动时间为t秒,
则CP=t,AP=4-t,AQ=t,
∵CD是△ABC的高,
∴∠BDC=90°,∠B+∠BCD=90°,
而∠A+∠B=90°,
∴∠A=∠BCD,
故而△APQ恰好与△CBD全等,分以下两种情况讨论:
①当△APQ≌△CBD时,AP=BC,AQ=CD,
即:,解得:,
②当△AQP≌△CBD时,AP=CD,AQ=BC,
即:,解得:,
∴点Q的运动速度为cm/s或者cm/s,
故填:.
【点睛】本题考查勾股定理,等面积法求直角三角形斜边上的高,全等三角形的性质,比较综合,注意分类讨论思想的应用.
三、解答题
19、(1)
(2)
【分析】利用提公因式法和公式法进行因式分解即可.
(1)
解:原式= (x2-4)y=
(2)
解:原式=2(x2-6x+9)=
【点睛】本题主要考查因式分解,熟练地掌握提公因式法,
【解析】(1)
(2)
【分析】利用提公因式法和公式法进行因式分解即可.
(1)
解:原式= (x2-4)y=
(2)
解:原式=2(x2-6x+9)=
【点睛】本题主要考查因式分解,熟练地掌握提公因式法,公式法,和分组分解法是解题的关键.
20、【分析】根据分式的运算法则,结合因式分解通分、约分;
【详解】解:原式=
=
【点睛】本题考查了平方差公式,分式的化简;掌握相关运算法则是解题关键.
【解析】
【分析】根据分式的运算法则,结合因式分解通分、约分;
【详解】解:原式=
=
【点睛】本题考查了平方差公式,分式的化简;掌握相关运算法则是解题关键.
21、见解析
【分析】先证明△ABC≌△DCB,再证明△AOB≌△DOC,可得结论.
【详解】证明:在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS).
∴∠A=∠D .
在△AOB和△
【解析】见解析
【分析】先证明△ABC≌△DCB,再证明△AOB≌△DOC,可得结论.
【详解】证明:在△ABC和△DCB中,
,
∴△ABC≌△DCB(SSS).
∴∠A=∠D .
在△AOB和△DOC中,
,
∴△AOB≌△DOC(AAS).
∴OA=OD.
【点睛】本题考查三角形全等的判定,灵活选用判定方法是解题的关键.
22、(1);
(2)的度数不会变化,见解析
【分析】(1)根据得出,,即可得出结论;
(2)根据三角形内角和定理得出,,然后通过已知角度数和,即可得出的度数.
(1)
∵,
∴,,
∴
(2)
绕点D转
【解析】(1);
(2)的度数不会变化,见解析
【分析】(1)根据得出,,即可得出结论;
(2)根据三角形内角和定理得出,,然后通过已知角度数和,即可得出的度数.
(1)
∵,
∴,,
∴
(2)
绕点D转动过程中,的度数不会变化.理由如下:
∵,,
∴
∴
【点睛】本题主要考查了平行线的性质和三角形内角和定理的应用,熟练掌握平行线的性质和三角形内角和定理是解题的关键.
23、原计划每天制作校服120套
【分析】设原计划每天制作校服套,根据结果所用天数是原计划天数的.列分式方程,解此方程即可.
【详解】解:设原计划每天制作校服套
根据题意,得
解,得
经检验:是原方程的解
【解析】原计划每天制作校服120套
【分析】设原计划每天制作校服套,根据结果所用天数是原计划天数的.列分式方程,解此方程即可.
【详解】解:设原计划每天制作校服套
根据题意,得
解,得
经检验:是原方程的解
答:原计划每天制作校服120套.
【点睛】本题考查分式方程的应用、解分式方程等知识,注意验根.
24、(1),;(2);(3)①28;②.
【分析】(1)方法1可采用两个正方形的面积和,方法2可以用大正方形的面积减去两个长方形的面积;
(2)由(1)中两种方法表示的面积是相等的,从而得出结论;
(3
【解析】(1),;(2);(3)①28;②.
【分析】(1)方法1可采用两个正方形的面积和,方法2可以用大正方形的面积减去两个长方形的面积;
(2)由(1)中两种方法表示的面积是相等的,从而得出结论;
(3)①由(2)的结论,代入计算即可;
②设,,则,,求即可.
【详解】解:(1)方法1,阴影部分的面积是两个正方形的面积和,即,
方法2,从边长为的大正方形面积减去两个长为,宽为的长方形面积,即,
故答案为:,;
(2)在(1)两种方法表示面积相等可得,
,
故答案为:;
(3)①,
,
又,
;
②设,,则,,
,
答:的值为.
【点睛】本题考查完全平方公式的几何背景,解题的关键是掌握完全平方公式的结构特征是正确应用的前提,用不同方法表示同一部分的面积是得出关系式的关键.
25、(1)12;(2)①6;②17;(3)
【分析】(1)根据完全平方公式的变形应用,解决问题;
(2)①两边平方,再将代入计算;
②两边平方,再将代入计算;
(3)由题意可得:,,两边平方从而得到,即
【解析】(1)12;(2)①6;②17;(3)
【分析】(1)根据完全平方公式的变形应用,解决问题;
(2)①两边平方,再将代入计算;
②两边平方,再将代入计算;
(3)由题意可得:,,两边平方从而得到,即可算出结果.
【详解】解:(1);
;
;
又;
,
,
∴.
(2)①,
;
又,
.
②由,
;
又,
.
(3)由题意可得,,;
,;
,
;
图中阴影部分面积为直角三角形面积,
,
.
【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①,②是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案.
展开阅读全文